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Abstract

This thesis presents a broad range of descriptions regarding classical plasmonic systems in
two- and three-dimensions, with special attention to the 2D material graphene.

The first part of the thesis introduces the fundamental concepts of classical electro-
dynamics, which constitute the building blocks necessary to describe classical plasmonics.
This framework is then used to develop the theoretical description of plasmonic excitations
at planar dielectric-metal interfaces, where the dispersion relation is derived at both single
and double interface geometries. The hybridized modes of the double-layer systems have
then been identified, along with the possibility of tuning these modes by variation of the
interface separation. Next, after having dealt with plasmonics in 3D, the attention is turned
to the 2D material graphene, where the corresponding electronic and optical properties are
studied. Utilizing the tight-binding method reveals the particle-hole symmetric electronic
band structure of undoped graphene, together with its low-energy linear spectrum in the
vicinity of the Dirac points, which is responsible for the excellent electronic features of
this material. A brief investigation of graphene’s conductivity is performed, which demon-
strates a Drude-like conductivity in THz to mid-IR frequency region for doped graphene.
This coverage of the conductivity is followed by an outline of the transfer-matrix method in
systems containing one or two planar graphene sheets, from which the constant absorbance
of graphene at visible frequencies is derived. Equipped with the optoelectronic insights of
graphene, the physics governing plasmonic excitations in single and double planar graphene
systems is presented, which enlightens the ability to actively tune the resonance frequency in
graphene through adjustments of the doping level. The dispersion relation is presented for
both systems, which display an impressive degree of field confinement at frequencies in THz
to mid-IR spectral region, as opposed to the light-like dispersion of SPPs at dielectric-metal
interfaces in this regime.

Finally a study of parabolic shaped waveguides have been carried out. The dispersion
relation is derived for a Drude metal parabolic channel, which is followed by the same
analysis in a graphene-covered dielectric waveguide, leading to the findings of ultra-confined
surface plasmons, exceeding those in planar graphene.
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Resumé

Denne afhandling præsenterer en bred vifte af beskrivelser omhandlende plasmoniske sys-
temer i to og tredimensionale systemer, med ekstra fokus p̊a 2D materialet grafen.

Den første del af afhandlingen introducerer de fundamentale koncepter i klassisk elek-
trodynamik, hvilket udgører de nødvendige byggesten til at udarbejde klassisk plasmonics.
Disse rammer er derefter brugt til at udvikle den teoretiske beskrivelse af plasmoniske ex-
citationer ved plane dielektrisk-metal grænseflader, hvor dispersion relation er udledt for
b̊ade geometrier af enkelt og dobbelte grænseflader. De hybridiserede plasmontilstande i
den dobbelte grænsefladegeometri er derefter blevet identificeret, sammen med muligheden
for at justere disse tilstande ved variation af separationen mellem grænsefladerne. Dernæst,
efter at have kortlagt beskrivelsen af plasmonics i 3D, bliver fokusset drejet mod 2D ma-
terialet grafen, hvor de tilsvarende elektroniske og optiske egenskaber bliver studeret. An-
vendelse af Tight-Binding modellen afdækker den symmetriske partikel-hul b̊andstruktur af
udoteret grafen, sammen med dets lineære lavenergiske spektrum i nærheden af Dirac punk-
tet, hvilket er grunden til de fantastiske elektronske egenskaber i dette materiale. En kort
beskrivelse af konduktiviteten af grafen er udarbejdet, hvilket demonstrerer en Drudelig-
nende konduktivitet for doteret grafen i frekvensintervallet fra THz til midt IR. Denne
gennemgang af konduktiviteten er efterfulgt af en skitsering af transfer-matrix metoden i
systemer med en og to plane grafenplader, hvorfra den konstante absorbans ved synlige
frekvenser er udledt. Udstyret med indsigten i de optiske og elektronske egenskaber af
grafen, bliver den fysiske beskrivelse af plasmoniske excitationer i plane enkelt og dobbelt-
lag grafen systemer præsenteret, hvilket belyser grafens evne til aktivt at justere resonans-
frekvensen gennem variation af doteringsniveauet. Dispersion relation bliver præsenteret for
begge systemer, hvilket viser en imponerende grad af lyslokalisering for frekvenser omkring
midt IR i det elektromagnetiske spektrum, i modsætning til den lyslignende dispersion
relation for konventionelle overfladeplasmoner i dette regime.

Til sidst er parabolske bølgekanaler blevet studeret. Dispersion relation for en parabolsk
bølgekanal lavet af et Drudemetal er blevet udledt, hvilket er efterfulgt af en identisk analyse
for en dielektrisk bølgekanal overdækket af grafen. Denne udbyggende analyse fører til
opdagelsen af en ekstraordinær lyslokalisering, som overg̊ar lokaliseringen i fladt grafen.
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Chapter 1

Introduction

Light has been an essential part of science to mankind since the beginning of our docu-
mented time. Light was used by the ancient people to acquire knowledge about the distant
stars of the universe, and is used today to study objects at the microscopic length scale.
One of the biggest breakthroughs in science came along with the dynamical theory of the
electromagnetic field, published by Maxwell in 1865 [1], which laid out a crucial foundation
for the technological revolution in the upcoming centuries. One such example is the branch
of physics called nanophotonics, in which the fascinating field of plasmonics lies.

Plasmonics - the main subject of this thesis - deals with the study of plasmons, which
classically are viewed as collective excitations in the free-electron plasma of a metal, me-
diated by the Coulomb force. The first microscopic description of plasmons were given by
Pines and Bohm in 1952 [2], where a quantum mechanical theory, called the random-phase
approximation (RPA), was established.

Plasmons in thin films was initially considered by Ritchie in 1957 [3], which introduced
the concept of surface plasmons. The idea is that the plasmons at the surface of the conduc-
tor couples to free-space electromagnetic radiation. The resulting quasi-particle is termed a
surface plasmon polariton (SPP) if the coupling takes place at a planar interface, or localized
surface plasmon (LSP) if it takes place at a closed surface of a small particle [4]. Although
the theoretical groundwork was covered in the 20th century, decorative exploitation of the
plasmons dates multiple centuries, even millennia, back in time. Common examples of such
uses is the famous Lycurgus cup, or the stained glass windows in Gothic churches, where
the illustrative colors in both cases is caused by nanoscopic gold particles supporting LSPs.

Surface plasmons have the ability to confine light beyond the diffraction limit, which
enables substantially higher local field intensity and the possibility of subwavelength waveg-
uiding. Plasmonics have advanced to a great extent throughout the last couple of decades,
owed to the extensive improvement of characterization and nanofabrication techniques. The
interest in this field have especially increased in the scientific community in resent years,
which is partly due to the study of the two dimensional material graphene. Graphene -
isolated for the first time in 2004 [5] - is a 2D allotrope of carbon with its carbon atoms
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arranged in an hexagonal in-plane crystalline structure. Graphene exhibits outstanding
electronic and thermal as well as mechanical properties; It possesses a remarkably large
thermal conductivity [6], its free low-energy electrons behave as massless Dirac fermions
described by the relativistic Dirac Hamiltonian [7], and to top it all off, the graphene sheet
is flexible. Doped graphene is able to sustain plasmonic excitations in the THz to mid-IR
spectral region - this excitation is called a graphene surface plasmon (GSP). The resonant
frequency of the GSPs depend on the doping level, which is to say that graphene is tunable.
This ability to actively tune GSPs is of vital importance when it comes to the potential
implementation of graphene in technological devices.

The first part of this thesis deals with the classical description of plasmonics, which is
build upon the foundation of classical electrodynamics. In this framework the dispersion
relation of SPPs propagation along single planer dielectric-metal interfaces is discussed,
along with the corresponding field confinement and propagation length. The ideas de-
veloped in these discussions is then extended to SPPs in double interface geometries, more
specifically dielectric-metal-dielectric (DMD) and metal-dielectric-metal (MDM) structures.
The second part of the thesis introduces the important optical and electronic properties of
graphene, which is used to derive the plasmonic excitations in single-layer graphene (SLG)
and double-layer graphene (DLG). Finally the last chapter of the thesis introduces the
concept of subwavelength waveguides. First the dispersion relation is derived in a Drude-
metal parabolic channel in the electrostatic limit, then the same procedure is used for a
graphene-covered dielectric parabolic bulge and valley. The discussion of the graphene-free
parabolic channel in the thesis is merely a reproduction of already existing papers, while
the research on the graphene-covered parabola have been conducted by the author, guided
by the supervisors.
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Chapter 2

Electromagnetic Properties of
Solids

2.1 Fundamentals of Classical Electrodynamics

2.1.1 Maxwell’s equation and response functions

It is possible to describe the interaction of metals with electromagnetic radiation in the
classical framework of Maxwell’s macroscopic equations. This is a favourable approach
since the rapidly changing microscopic fields from interaction between charged particles in
the metal and electromagnetic waves can be omitted by the exchange of an overall averaged
macroscopic field. Maxwell’s equations of macroscopic electromagnetism read as1 [8]

∇ ·D(r, t) = ρf(r, t), (2.1.1a)
∇ ·B(r, t) = 0, (2.1.1b)

∇×E(r, t) = −∂B(r, t)
∂t

, (2.1.1c)

∇×H(r, t) = Jf(r, t) + ∂D(r, t)
∂t

, (2.1.1d)

where E denotes the electric field, H the magnetic field, D the electric displacement and
B the magnetic induction, while Jf and ρf represents the free current density and charge
density, respectively. The free current and charge density is separated into the induced and
external parts as Jf = Jind +Jext and ρf = ρind +ρext, which satisfies the continuity equation

∂

∂t
ρµ(r, t) + ∇ · Jµ(r, t) = 0, (2.1.2)

1Maxwell’s equations is written in SI units here. This convention will be adapted throughout the thesis.
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2.1. Fundamentals of Classical Electrodynamics T.P. Rasmussen

where µ = {f, ind, ext} indicates its appliance in each individual case. Charge conservation
is expressed through the continuity equation, and is therefore incorporated implicitly in
Maxwell’s equation. Two constitutive relations encapsulate the relationship between the
fundamental physical fields, E and H, and the vectors, D and B. These relations take a
simple form in the limiting case of a linear, uniform, non-magnetic and isotropic media

D(r, t) = ε0E(r, t), (2.1.3)
B(r, t) = µ0H(r, t), (2.1.4)

where ε0 and µ0 stands for the electric permittivity and the magnetic permeability of vac-
uum, respectively. A third constitutive relation becomes important in the case of a con-
ducting material, which is Ohm’s law

Jind(r, t) = σE(r, t), (2.1.5)

where σ, denoting the conductivity, generally takes the form of a second-rank tensor in
the case of anisotropic mediums. The linear relationships in Eq (2.1.3) and (2.1.5) can be
written in a more general manner [8]

D(r, t) = ε0

∫
ε(r− r′, t− t′)E(r′, t′)dr′dt′, (2.1.6)

Jind(r, t) =
∫
σ(r− r′, t− t′)E(r′, t′)dr′dt′, (2.1.7)

where ε and σ expresses the bound-response dielectric function and free-carrier conductivity,
respectively, and D and Jind depends on the value of E at all times t′ and all locations r′.
In writing of equation (2.1.6) and (2.1.7) it is implicitly assumed that t′ > t for both
the dielectric function and the conductivity, in order to preserve causality. These general
versions of the constitutive relations account for both temporal and spacial dispersion, thus
giving a non-local description of the response.

Translational invariance have been assumed in the relations (2.1.6) and (2.1.7), so that
only the difference in space is of importance. This assumption enables a specially simple
form after a Fourier transformation in space and time2, which leads to3

2The forward and backward Fourier transformation will be defined as
f̃(kx, ky, kz, ω) = 1

(2π)4

∫∫∫∫
f(x, y, z, t)ei(−kxx−kyy−kzz+ωt)dx dy dz dt,

and
f(x, y, z, t) =

∫∫∫∫
f̃(kx, ky, kz, ω)ei(kxx+kyy+kzz−ωt)dkx dky dkz dω,

respectively.
3This is derived using the convolution theorem, which states that Fourier transform of convolution in

one domain (space or time) equals point-wise multiplication in the other (momentum or frequency), i.e
F(f ∗ g) = F(f) · F(g), where F denotes forward Fourier transform operator.

4
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D(k, ω) = ε0ε(k, ω)E(k, ω), (2.1.8)
J(k, ω) = σ(k, ω)E(k, ω) (2.1.9)

The discussion so far has treated the material response due to free and bound charges
separately through σ in Jind and ε ≡ εb in D, respectively. However, it is usually preferred
to combine both of these contributions into a single dielectric function in plasmonics. One
way to realize this function is to first write the frequency-domain version of Eq. (2.1.1d)
(∂t → −iω), and then to expand Jf into its induced and external parts

∇×H(r, ω) = Jext(r, ω)− iωD̃(r, ω), (2.1.10)

where D̃(r, ω) = D(r, ω)+ i
ωJind(r, ω) describes the total dielectric function through D̃(r, ω) ≡

ε0
∫
ε(r, r′;ω)E(r′, ω)dr′, leading to

ε(r, r′;ω) = εb(r, r′;ω) + i
σ(r, r′;ω)

ωε0
. (2.1.11)

This modified version of the electric displacement satisfies Maxwell’s equations (2.1.1) upon
replacing ρf → ρext, Jf → Jext and D→ D̃

∇ · D̃(r, ω) = ρext(r, ω), (2.1.12a)
∇ ·B(r, ω) = 0, (2.1.12b)

∇×E(r, ω) = iωB(r, ω), (2.1.12c)
∇×H(r, ω) = −iωD̃(r, ω) + Jext(r, ω). (2.1.12d)

Consequently one can exploit the advantages of having all the induced effects in the system
contained into a single field, D̃, as opposed to describing the induced quantities via two
fields, as in Eq. (2.1.1). For instance, using Eq. (2.1.12) means that only D̃ and the
corresponding dielectric function εb needs to be considered when no external charges or
currents is present.

Finally it is worth mentioning that appropriate curl identities can be used together
with the curl equations of Maxwell in order to derive the Helmholtz equation, which in the
absence of free charges and currents (i.e Jf = ρf = 0) reads [4]

(
∇2 − 1

v2
∂2

∂t2

)
E(r, t) = 0, (2.1.13)

where an identical relation holds for the the magnetic field, and v = c√
ε
. This equation

describes the propagation of electromagnetic waves through a medium with relative per-
mittivity ε.
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2.1.2 The local-response approximation

Although the constitutive relations defined in the previous section presents a clean and
general formulation, this picture can be cumbersome to use in practice. The non-local
dielectric function ε(r, r′;ω), which depends on all locations, demand specification of seven
coordinates and more often than not is unknown, lead to obvious difficulties. This obstacle
can be overcome by the introduction of the local-response approximation (LRA), which
ignores the non-local response, meaning that the response functions is determined solely
in terms of the frequency, i.e. ε(ω) and σ(ω). Thus the LRA simplifies the constitutive
relations to

D = ε0εLRA(ω)E(r, ω), (2.1.14)

and

J = σLRA(ω)E(r, ω), (2.1.15)

where εLRA ≡ ε(ω) and σLRA ≡ σ(ω) will be adopted throughout the rest of the thesis.
The LRA is valid as long as the excitation wavevector is much smaller than the Fermi
momentum of the electrons, which will be satisfied in all the considered plasmonic systems
in this thesis.

2.1.3 Boundary conditions at interfaces

All the electromagnetic fields and material properties discussed so far have been under the
assumption of a single homogeneous medium. This medium is now subdivided into two
parts, separated by an arbitrary interface. Discontinuity of Maxwell’s equation and the
constitutive relations arises at this interface, although they still hold true in each of the
media. Introduction of appropriate boundary conditions relate the fields at each side of the
interface. The boundary conditions is derived from the integral form of Maxwell’s equations
together with the divergence and Stoke’s theorem [8], yielding

n̂ · (D1 −D2) = σs, (2.1.16a)
n̂ · (B1 −B2) = 0, (2.1.16b)

n̂× (B1 −B2) = µ0Js, (2.1.16c)
n̂× (E1 −E2) = 0. (2.1.16d)

Equation (2.1.16a) and (2.1.16b) represents the boundary condition normal to the interface,
while (2.1.16c) and (2.1.16d) represents the tangential ones. The subscripts refers to the two
half-spaces and n̂ denotes the normal unit vector, pointing from medium 2 into medium 1.
The quantities σs and Js expresses, respectively, the possible existence of a surface charge
and surface current density, which naturally satisfies the two-dimensional version of the
continuity equation, ∇ · Js + ∂tρs = 0.

6
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2.2 The Drude model

The optical behaviour of metals can be described by a plasma model, called the Drude
model [9], at which the electrons are modelled to move freely among fixed positive ion
cores (comprising both the nucleus and the tightly bound electrons). The motion of the
electrons, exposed to an external electric field E(t) = E0e

−iωt, can in this model be described
classically through Newton’s second law, which takes the form [10]

d

dt
p(t) = −eE(t)− γp(t), (2.2.1)

where e is the elementary charge, p the average momentum of the electrons and γ is the
scattering rate given by the inverse of the relaxation time τ , which in turn is defined as
the average time between collisions of the free electrons with the immobile ions. Taking
the time dependence of p(t) to be the same as for the external field E(t), the solution to
equation (2.2.1) becomes

p(t) = eE(t)
iω − γ

. (2.2.2)

The induced current density arising from ne electrons per unit volume moving with net
velocity v, is J = −enev. Writing the net velocity in terms of the average momentum, and
then substituting Eq. (2.2.2) into this relation yields

J = −enep
m

= e2ne
m

E(t)
γ − iω

(2.2.3)

The expression for the optical conductivity can now be found by comparing this current
density with the constitutive relation (2.1.5), which leads to

σ(ω) = e2ne
m

1
γ − iω

(2.2.4)

Substituting this conductivity into the previously derived dielectric function in Eq. (2.1.11)
yields [11, 10]

ε(ω) = εb(ω)−
ω2
p

ω2 + iγω
, (2.2.5)

where ω2
p = e2ne

mε0
denotes the plasma frequency of the free electron gas. In the case of the

free-electron model, we have that εb = 1. However, for conventional plasmonic metals like
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Au, Ag and Cu, a correction to this model is needed due to filled d-bands producing a
highly polarized background. This correction is introduced by a higher value of εb, which
usually lies in the interval 1 ≤ εb ≤ 10.

Albeit its simple nature, this model is able to describe the essential properties of metals
in the infrared regime of the electromagnetic spectrum. The reason lies in the fact that the
frequency dependence of the optical response is highly influenced by intraband transitions
in this part of the spectrum, thus yielding relatively good predictions. However, the great
predictions of the model falls apart considerably for the noble metals in the visible and
ultraviolet regions, where interband transitions, among other things, starts to dominate.
This does indeed not come as a surprise, since the model at hand only takes into account a
single band.

The behaviour mentioned above is illustrated in Fig 2.1, which compare experimental
values of the dielectric function (taken from Johnson and Christy [12]) with the Drude
model in the case of gold and silver. The blue and red dashed curve (circles) represents,
respectively, the real and imaginary part of the Drude model dielectric function (experi-
mentally determined dielectric function). This figure clearly shows the previously discussed
frequency dependent accuracy of the Drude model. The model fits the data well at at
energies smaller than ≈ 3 eV, while significant deviations starts to occur above this energy.

The presence of interband transitions can be included to the model, by the addition of a
resonant term to the original equation of motion, whose resonant frequency represents the
transition energy between the bands. This extra contribution leads to a dielectric function,
which also consists of a Lorentz-oscillator term, while keeping the classical picture intact.
It is worth mentioning, that one of the main advantages of the Drude model lies in its
accurate prediction despite its great simplicity. One needs to rely on a quantum mechanical
formulation in order to get a more rigorous description of the optical properties of the metals
[13].

8
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(a) (b)

Figure 2.1: Dielectric function of two frequently used noble metals in the plasmonic
community: gold (left figure) and silver (right figure). The filled circles represents exper-
imentally obtained values taken from Johnson and Christy [12]. The dashed lines show
the corresponding Drude model, which for gold have been obtained with the parameters:
εb = 10.0, ~ωp = 9.08 eV and ~γ = 78 meV, while the following parameters were used for
silver: εb = 3.5, ~ωp = 9.16 eV and ~γ = 21 meV, taken from [14]

9



Chapter 3

Surface Plasmon Polaritons at
Metal/Dielectric Interfaces

Now that the fundamental theory of interaction between electromagnetic fields and matter
in the framework of Maxwell’s equations have been established, we are in possession of the
underlying building blocks necessary to discuss the field of classical plasmonics. Equipped
with Maxwell’s equations, the boundary conditions and the relevant local response func-
tion, the plasmonic excitations can be perfectly characterized in the regime of classical
electromagnetism.

The intention of the following chapter is to present the essential concepts of the clas-
sical plasmonic theory. These concepts are of crucial importance, and will constitute the
foundation on which the upcoming chapters are built.

3.1 Single Dielectric-Metal Interface

The simplest system capable of sustaining surface plasmon-polaritons (SPPs) is that of a
single flat dielectric-metal interface. For the sake of simplicity, both media is assumed to
be isotropic and semi-infinite. The dielectric have been chosen to occupy the space defined
by z < 0, while the metal is located at z > 0, which is schematically illustrated in Fig 3.1

The dielectric nature of the two mediums at hand is fundamentally different from each
other. The dielectric medium is described by a positive and real valued dielectric constant,
ε1, while the properties of the metal is characterized by a frequency-dependent complex
dielectric function, ε2(ω). It suffices, at this stage, to use the dielectric function (2.2.5)
derived in section (2.2) from the Drude model with εb(ω) = 1 to describe ε2(ω)1.

1This approximation is valid as long as the energy of the incoming light is not sufficient to cause interband
transitions, i.e the infrared regime for the commonly used noble metals in plasmonics.
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3.1. Single Dielectric-Metal Interface T.P. Rasmussen

Figure 3.1: Illustration of the single dielectric-Metal Interface geometry with the corre-
sponding axis convention, where the interface separating the two media is located at z = 0.
The y-axis points into the paper and the system is assumed to be uniform along this axis.

3.1.1 Dispersion relation

Examination of propagating solutions to Maxwell’s equations is now carried out in the from
of transverse magnetic (TM) (or p-polarized) waves. In this case the fields can be written
as

Ej(r, t) = (Ej,xx̂+ Ej,zẑ)e−κj |z|ei(qx−ωt), (3.1.1a)
Bj(r, t) = Bj,yŷe

−κj |z|ei(qx−ωt), (3.1.1b)

where j = 1, 2 denotes the media shown in Fig 3.1, q identifies the propagation constant
(taken to point along the x-axis in the present case), κj describes an exponential decay of the
fields along the z-axis and the usual harmonic time-dependence e−iωt have been assumed.
Inserting these fields into Maxwell’s equations (2.1.12c) and (2.1.12d) leads to the following
field amplitude relations

Bj,y = −ωεj
c2q

Ej,z, (3.1.2a)

Bj,y = −isj
ωεj
c2κj

Ej,x, (3.1.2b)

Ej,x = −isj
κj
q
Ej,z, (3.1.2c)

and

κ2
j = q2 − εj

ω2

c2 (3.1.3)
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3.1. Single Dielectric-Metal Interface T.P. Rasmussen

where sj , defined as sj = δj2 − δj1, is ensuring field confinement to the interface. The
last step is to relate the fields on each side of the interface. This is done by invoking the
tangential boundary condition of Maxwell’s equations (2.1.16c) and (2.1.16d), which yields

E1,x = E2,x, (3.1.4)
B1,y = B2,y. (3.1.5)

Inserting the results from Eq. (3.1.2) in these boundary conditions leads to the following
equation [11]

ε1
κ1(q, ω) + ε2(ω)

κ(q, ω) = 0 , (3.1.6)

which establishes the condition for existence of a SPP dispersion relation. It is seen in Eq.
(3.1.1) that one must have Re{κ1,2} > 0 if the fields is to be confined to the interface.
Therefore if ε1 > 0, which is common for most dielectric mediums, then one must have that
Re{ε2(ω)} < 0 in order to satisfy the SPP condition (3.1.6). This means that excitation of
SPPs only takes place at interfaces between two media with opposite sign of the real part
of their dielectric permittivities.

It is possible to achieve an expression relating the SPP wavevector to the frequency by
insertion of Eq. (3.1.3) in Eq. (3.1.6) [11]

qSPP = ω

c

√
ε1ε2(ω)
ε1 + ε2(ω) . (3.1.7)

This dispersion relation for the single dielectric-metal interface SPP can be analyzed in two
separate cases, namely with and without the presence of damping.

Without Loss (γ = 0):
The Drude dielectric function in the case of zero attenuation is simply found by setting
γ = 0 in Eq. (2.2.5), which leads to

ε2(ω) = 1−
ω2
p

ω2 . (3.1.8)

The SPP dispersion relation obtained by insertion of this dielectric function into Eq. (3.1.7)
is represented by the blue continuous curve in panel (a) of Fig. 3.2, which depicts the bound
excitations confined to the interface. The bound nature of SPPs dictates a real valued q and
κj , hence the dispersion relation must be located to the right of the light line (red dashed
line). Accordingly, it is not possible to excite SPPs directly by light, instead alternative
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3.1. Single Dielectric-Metal Interface T.P. Rasmussen

methods has to be invoked, which are suited for coupling light to the surface plasmons.
Taking the limit for small wavevectors, where the dispersion curve approaches the light
line, it is seen that κ1 � 1. Consequently the electromagnetic field is not well confined to
the interface and will reach far into the dielectric medium. Taking the opposite limit, where
q → ∞, it is observed in Fig. 3.2a that the SPP dispersion asymptotically approaches a
specific frequency. This frequency is dubbed the surface plasmon frequency and is derived
by setting ε1 + ε2(ω) = 0 in Eq. (3.1.7), leading to [4]

ωsp = ωp√
1 + ε1

. (3.1.9)

Although this thesis will mainly be concerned with SPPs, it is worth noting that a sec-
ond branch appears in the lossless case for frequencies above ωp (green continious curve in
Fig. 3.2a. This branch represents the volume plasmon polaritons (VPPs) and characterizes
collective oscillations of the free electrons in the bulk material2. The metals become trans-
parent to the incoming light in this upper region, since ω > ωp, and is therefore referred to
as radiative modes.

With loss (γ 6= 0):
All metals is in reality exposed to some degree of losses. These losses come in a variety of dif-
ferent forms, but all have the same attenuating effect on the propagating SPPs. The Drude
model encapsulate all of these contributions into a single parameter γ (see Eq. (2.2.5)).
This simple approach fits the description of the optical response of the metals rather well
at low frequencies, but breaks down once interband transitions become significant.

The lossy SPP dispersion relation in the framework of the Drude model is depicted in Fig
3.2b with the corresponding light line. One of the most noteworthy aspect of this dispersion
relation is the limited value of Re{q}, as opposed to the possibility of an infinite valued
wavevector in the lossless case. The consequence of this limitation is a lower restriction on
the SPP wavelength, given by λSPP = 2π/Re{q}, which in turn leads to less confinement
to the interface. Finally notice the emergence of modes in the region bounded by ωsp and
ωp, which is in contrast to the lossless modes.

2The VPP dispersion relation is general given by q(ω) =
√
ε2(ω)ω

c
, which without the presence of losses

can be reduced to ω(q) =
√
ω2
p + q2c2.
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(a) (b)

Figure 3.2: Dispersion relation of surface plasmon polariton in the a single dielectric-
metal interface. The metal have been modelled in the framework of the Drude model and is
placed in air (ε1 = 1). (a) Drude metal without damping (γ = 0). (b) Drude metal taking
damping into account (γ = ωp

20 ).

3.1.2 Propagation length and field confinement

The complex-valued dielectric function arising from the existence of damping mechanisms
in the system naturally leads to a corresponding complex wavevector q = q′ + iq′′. The
damping in the x-direction of the SPP will therefore be described by an exponentially
decaying term of the form exp(−q′′x). The real and imaginary part of the wavevector is
given by [11]

q′ = ω

c

√
ε1ε′2
ε1 + ε′2

, (3.1.10a)

q′′ = 1
2
ω

c

(
ε1 + ε′2
ε1ε′2

)3/2 (ε′2)2

ε′′2
. (3.1.10b)

The intensity of the electromagnetic field falls off as exp(−2q′′x), the characteristic
propagation length is therefore given by [11]

LSPP = 1
2q′′ , (3.1.11)

which defines the length, where the SPP intensity has been decreased by 1/e. The prop-
agation length is illustrated in Fig. 3.3a, where the blue and red curve corresponds to an
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air-silver and silica-silver interface respectively. One aspect worth noting from this plot is
the big variety of propagation lengths in the given wavelength interval, ranging from a few
to 100 micrometers in the visible wavelengths up to even 1000 micrometers in the infrared
region. Further note, that the minimum in the propagation length (approximately at 400nm
for the air-silica interface) corresponds to the plasmon frequency ωsp, which is due to the
previously stated definition of this quantity.

Among the many interesting properties of SPPs, one of the most prominent features is
the degree of light confinement to a dielectric-metal interface. This confinement of light,
perpendicular to the interface, is usually on scales below the diffraction limit, which in the
field of optics sets a theoretical limit to the separation of two airy discs [15]. The inten-
sity of the electromagnetic fields in the perpendicular direction decrease exponentially as
exp(−κj |z|), thus the field confinement can, as in the case of the characteristic propagation
length, be described by the following quantity [11]

ζj = 1
Re{κj}

, (3.1.12)

(a) (b)

Figure 3.3: (a) Experimentally determined propagation length of silver submerged in air
(blue curve) and SiO2 (red curve). The calculation was done from LSPP = (2q′′)−1 and
with data from Johnson and Christy [12]. (b) Penetration depth of SPPs into air (upper
subfigure) and silve (lower subfigure), obtained from Johnson and Christy dielectric data
[12]

dubbed the penetration depth. This quantity have been illustrated as a function of the
wavelength in the case of a air-silver interface in Fig. 3.3b. It becomes apparent from this
plot that the penetration depth is strikingly different in the two media. The behaviour in
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the dielectric (air) is steadily increasing as a function of the wavelength of the incoming
light, consequently the field confinement is suppressed. The metal (silver), on the other
hand, exhibits a rather constant nature for frequencies below ωsp and is observed to be
several orders of magnitude smaller as compared to the dielectric.

It is now clear that an inevitable trade-off exists in plasmonics regarding SPPs. Large
propagation lengths comes at a cost, which is smaller field confinement and vice versa. Set-
ting up an experiment involving SPPs therefore typically lead to some kind of compromise
for the quantities discussed above, since one cannot have both.

3.2 Double Dielectric-Metal Interface

The previous section treated the most simple system capable of sustaining SPPs. However,
the material discussed in that section can be further developed into systems comprising two
(and in principle more) planar interfaces between dielectrics and metals. The dispersion
relation will be derived and visualized in this section for both the metal-dielectric-metal
(MDM) and the dielectric-metal-dielectric (DMD) structures.

The spectrum of SPPs in planar double-interfaces are derived in much the same fashion
as for the single interface system. The situation at hand is schematically illustrated in figure
3.4.

Figure 3.4: Schematic illustration of a three-layered system, able to sustain propagating
SPPs. The system could be that of a symmetric MDM structure, meaning that ε2 ≡ ε2(ω),
or that of a symmetric MDM, at which ε1 ≡ ε1(ω) and ε3 ≡ ε3(ω). The separation between
the two cladding media is denoted d and the cladding media themselves is assumed to be
semi-infinite.

The difference between the case of single and double interfaces, is that the double interface
geometry permits a superposition of exponentially growing and decaying fields in the middle
medium, ε2. When the spacing, d, separating medium one and three is sufficiently large,
the three-layered system can be regarded as two isolated single interface structures. The
interesting physics, however, emerges when this separation is decreased to a distance, at
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which communication between the electromagnetic fields is possible. This ”communication”
leads to new hybridized modes with different properties.

3.2.1 Dispersion relation

The spectral properties will, just as for the single interface, be derived in the form of TM
surface waves, and the electromagnetic fields in medium one and three is therefore given
by Eq. (3.1.1). Accordingly the results in Eq. (3.1.2) and (3.1.3) still holds in these two
media. Medium two (where 0 < z < d), on the other hand, should, as mentioned earlier, be
described as a superposition of exponentially growing and decaying waves, taking the from

E2(r, t) =
[(
E

(+)
2,x x̂ + E

(+)
2,z ẑ

)
eκ2z +

(
E

(−)
2,x x̂ + E

(−)
2,z ẑ

)
e−κ2z

]
ei(qx−ωt), (3.2.1a)

B2(r, t) =
(
B

(+)
2,y e

κ2z +B
(−)
2,y e

−κ2z
)

ŷei(qx−ωt). (3.2.1b)

Inserting these fields into Maxwell’s equations results in the following expressions

B
(+)
2,y = −ωε2

c2q
E

(+)
2,z , (3.2.2a)

B
(+)
2,y = i

ωε2
c2κ2

E
(+)
2,x , (3.2.2b)

B
(−)
2,y = −ωε2

c2q
E

(−)
2,z , (3.2.2c)

B
(−)
2,y = −i ωε2

c2κ2
E

(−)
2,x , (3.2.2d)

κ2 =
√
q2 − ε2ω2/c2 (3.2.3)

which relates the amplitude of the magnetic field with the associated amplitude of the
electric field. Two sets of boundary conditions needs to be exploited, in order to derive the
dispersion relation, because of the existence of two interfaces. The first condition at z = 0
for the interface separating medium one and two reads

E1,x = E
(+)
2,x + E

(−)
2,x , (3.2.4)

B1,y = B
(+)
2,y +B

(−)
2,y , (3.2.5)

while the second condition at z = d for the interface between medium two and three is given
by
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E
(+)
2,x e

κ2d + E
(−)
2,x e

−κ2d = E3,xe
−κ3d, (3.2.6)

B
(+)
2,y e

κ2d +B
(−)
2,y e

−κ2d = B3,ye
−κ3d. (3.2.7)

It is obvious at this point, that finding the spectral properties in the double layer system
is more involved as compared to the single interface. For instance, finding a non-trivial
solution for the electric field now involves four equations, as is the case for the magnetic
field. Fortunately Eq. (3.1.1) and (3.2.2) can be collected into a single linear matrix equation


−1 1 1 0
− ε1
κ1

ε2
κ2

− ε2
κ2

0
0 eκ2d e−κ2d −e−κ3d

0 ε2
κ2
eκ2d − ε2

κ2
e−κ2d ε3

κ3
e−κ3d



E1,x

E
(+)
2,x

E
(−)
2,x
E3,x

 = 0. (3.2.8)

The non-trivial solution is then calculated by setting the determinant of Eq. (3.2.8) equal
to zero, which leads to the following condition [11]

(
1 + ε2κ1

ε1κ2

)(
1 + ε2κ3

ε3κ2

)
=
(

1− ε2κ1
ε1κ2

)(
1− ε2κ3

ε3κ2

)
e−2κ2d . (3.2.9)

It is implicit in Eq. (3.2.9) that κj is a function of both the frequency and the wavevector
κj(q, ω) and that the dielectric function in the metallic media depends on the frequency
ε(ω)3. Taking the limit d → ∞, meaning that the separation of medium one and three
becomes large, this equation reduces to the following two conditions

ε1
ε2

+ κ1
κ2

= 0 ,
ε3
ε2

+ κ3
κ2

= 0. (3.2.10)

These conditions can be identified with two isolated single interface dispersion relations.
However, this should not come as a surprise, since the fields is unable to interact with one
another in medium two if the spacing, d, is too large.

A special case worth discussing, is that of a symmetric MDM or DMD geometry, where
medium one and three is made of the exact same material, i.e ε1 = ε3 and κ1 = κ3. These
new conditions simplifies the dispersion relation and leads to two destinct modes given by
[11]

ω+ : tanh
(
κ2d

2

)
= −ε2κ1

ε1κ2
, (3.2.11)

ω− : coth
(
κ2d

2

)
= −ε2κ1

ε1κ2
. (3.2.12)

3The dielectric function of the dielectric medium could, in principle, also depends on the frequency,
however the effect from this frequency dependence will be ignored here for the sake of simplicity.
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The ”+” and ”−” subscript in Eq. (3.2.11) and (3.2.12) denotes respectively the high and
low-frequency mode.

The behaviour of these hybridized modes in symmetric DMD structures is shown for a
variety of different separations, d, in Fig. 3.5a. It is seen that a relatively large thickness
of 50 nm (solid blue curve) almost resembles the dispersion relation for the single interface
(dot dashed purple curve), which supports the d = ∞ limit discussed above. A rather
small gap of 5 nm (solid orange curve), on the other hand, differs substantially from the
single planar interface, clearly distinguishing the high frequency mode (upper branch) from
the low frequency mode (lower branch). This splitting of the modes arises because of the
interaction of the fields, which perturbs the system and hence removes the degeneracy in the
system. Further notice that the ω+ mode i able to overcome the surface plasmon frequency,
ωsp, if the film is sufficiently thin, as opposed to the single interface, where no propagating
solutions existed in the region bounded by ωsp and ωp. The low frequency mode, on the
contrary, does not cross ωsp, regardless of the film thickness. Accordingly this mode has
the ability to achieve very large wavevectors, meaning that the SPP wavelength can be
exceptionally small.

(a) (b)

Figure 3.5: (a) Hybridized modes in planar DMD system. (b) Hybridized modes in
planar MDM system. The dielectric medium consists of air (εdielectric = 1) and the metal
is described by the Drude model without damping (γ = 0) and ωp = 9.2 eV.

The dispersion relation for the MDM structure depicted in Fig. 3.5b shows the same
dependence on the film thickness as the DMD geometry. One striking difference, however,
between these two systems appears near the light line for the high frequency modes, since
these modes doesn’t go to zero.

This analysis of double interface structures could indeed be further developed in the
case of a non-zero damping parameter, γ, in the Drude mode [16]. In accordance with
the previous sections, one would expect a maximum value for the wavevector, eventually
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bending back and crossing the light line. Looking at the DMD structure, it turns out that
the introduction of damping won’t influence the two modes in the same way [11]. The
propagation length of the high frequency mode increases when the separation decreases,
while the low frequency mode shows the opposite behaviour. The high and low frequency
mode is, for this reason, often called the long- and short-range surface plasmon-polariton,
respectively.
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Chapter 4

Optical and Electronic Properties
of Graphene

Graphene is a two-dimensional material made of carbon atoms, which are arranged in a
hexagonal structure. Grapene was isolated for the first time in 2004 [5] and have, since that
day, been gaining a lot of research interest due to some of its exceptional properties; it shows
a remarkably large thermal conductivity [6], is stronger than steel and at the same time
flexible [17]; The free electrons in graphene behaves as massless Dirac fermions satisfying
the relativistic Dirac equation. Graphene has, on behalf of these uncommon features, been
called a ”wonder material”.
This chapter will serve to review and discuss the optical and electronic properties of
graphene. The knowledge acquired will then constitute the foundation, necessary to de-
scribe the optical response of graphene in the upcoming chapters.

4.1 Electronic band structure of graphene

4.1.1 Real and reciprocal space description of graphene

Carbon is element number six in the periodic table and has the following electronic config-
uration

[C] = 1s22s22p2. (4.1.1)

This ground state configuration of the carbon atom is, however, not able to create the
amount of bonds required in graphene. The 2s orbital therefore fuse with the 2p orbitals
under the promotion of an electron to the 2pz orbital [18]. The hybridization of the 2s, 2px
and 2py orbitals now originate the strong in-plane σ-bonds seperated by 120o, while the
remaining 2pz electron constitute the weaker out-of-plane π-bond. The π-band can be said
to be half-filled, since the 2pz orbital only contains a single electron [7]. It is these electrons
that give the characteristic low-energy electronic properties of graphene.
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(a) (b)

Figure 4.1: Hexagonal structure and the corresponding brillouin zone of one-atom thick
graphene. (a) Real space structure of graphene made up of two sublattices A (blue dots)
and B (yellow dots). a1 and a2 denotes the primitive lattice vectors and δj (j ∈ {1, 2, 3})
represents the nearest-neighbour vectors. (b) Representation of the space reciprocal to the
real space, where b1 and b2 indicate the primitive reciprocal lattice vectors. The symmetry
points in the first brillouin zone is given by Γ, M , K and K ′. The figure have been taken
from A. H. C. Neto [7].

The hexagonal structure of graphene in real space is shown in Fig. 4.1a. This structure
can equivalently be viewed as a composition of two sublattices, denoted by lattice A and
B, where all neighbours to a carbon atom in lattice A always lies in lattice B. The vectors
describing this nearest neighbour distance is given by

δ1 = a

2(1,
√

3) , δ2 = a

2(1,−
√

3) and δ3 = −a(1, 0), (4.1.2)

where a ' 1.42 Å is the separation between two carbon atoms in the lattice. These nearest-
neighbour vectors turns out to be of crucial importance in the discussion of the tight-binding
model. The primitive lattice vectors of real space can be constructed as follows

a1 = a

2(3,
√

3) and a2 = a

2 = (3,−
√

3). (4.1.3)

The associated reciprocal lattice is illustrated in Fig. 4.1b, where the space is now spanned
by the reciprocal primitive lattice vectors1

1The primitive reciprocal vectors is found through the relation ai · bj = 2πδij known from condensed
matter theory [10]

22



4.1. Electronic band structure of graphene T.P. Rasmussen

b1 = 2π
3a (1,

√
3) and b2 = 2π

3a (1,−
√

3). (4.1.4)

Finally the points K and K′ dubbed the Dirac points, for reasons that will be clarified in
the next section, is given by

K = 2π
3a

(
1, 1√

3

)
and K′ = 2π

3a

(
1,− 1√

3

)
. (4.1.5)

4.1.2 The tight-binding model

The electronic band structure of a solid reveals a lot of information regarding the possible
energy states that electrons take within this material, as well as the forbidden energies,
this structure is therefore very desirable to obtain. One of the frequently used methods to
calculate the band structure of solids is that of the tight-binding (TB) model [10]. It turns
out that graphene follows this trend, where the TB approach have become a common way
to describe the properties of this material [7]. The electronic structure could in principle be
determined by other and more sophisticated methods, like density functional theory (DFT)
for instance. However, the advantage of the TB model lies in its ability to describe the
essential structures of the Hamiltonian, even though that the model is of great simplicity.
The first theoretical work of graphene, done by Wallace in 1947 [19], was actually done
with the TB-model in the attempt to describe the band structure of graphite, which is the
3D version of graphene.

The TB model can be used for many degrees of complexity, which depends on the
amount of neighbours taken into account. Graphene is sufficiently described by the nearest
neighbour TB model, which consists of a Hamiltonian with only a single hopping parameter,
t, although more involved Hamiltonians could be exploited by the introduction of a higher
order hopping parameter.

The nearest neighbour TB Hamiltonian for the 2pz electrons originating the π-bonds in
graphene is given by [11, 7]

HTB = t
∑
n,m

{|A,Rn〉 〈B,Rn + δm|+ H.c.}, (4.1.6)

where t represents the nearest-neighbour hopping parameter of the electrons, given by
t ≈ −2.7eV and H.c. stands for the Hermitian conjugate of the first term. The Wannier
state |A,Rn〉 describes a carbon atom in sublattice A in the unit cell located at position
Rn. A similar description holds for 〈B,Rn + δm|, that is the Wannier state of a carbon
atom in sublattice B located some distance (given by Eq. (4.1.2)) from the carbon atom in
sublattice A.

One common way to define the Wannier states is in terms of bloch states [10]
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|A,Rn〉 = 1√
N

∑
k

e−ik·Rn |A,k〉 , (4.1.7)

〈B,Rn + δm| =
1√
N

∑
k

eik(Rn+δm) 〈B,k| (4.1.8)

where the Bloch states have been written in Fourier representation andN is the total number
of unit cells in the system. Introducing Eq. (4.1.7) and (4.1.8) into the TB Hamiltonian
(4.1.6) yields

HTB = t
∑
k

{|A,k〉 〈B,k|φ(k) + H.c.}, (4.1.9)

where the following definition have been used

φ(k) =
3∑

m=1
eik·δm . (4.1.10)

The TB Hamiltonian (4.1.9) can be written in an alternative way as HTB =
∑
kψk

†Hkψk,
where ψk† = [|A,k〉 , |B,k〉] and

Hk =
[

0 tφ(k)
tφ∗(k) 0

]
. (4.1.11)

The spectrum is now found by calculating the eigenvalues of Hk, which yields [11]

Ek = ±t|φ(k)| = ±t

√√√√3 + 2 cos
(√

3kxa
)

+ 4 cos
(√

3
2 kxa

)
cos

(3
2kya

)
. (4.1.12)

The plus sign in Eq. (4.1.12) describes the upper conduction band, while the minus sign
refers to the lower valence band. Consequently it is concluded that the spectrum of undoped
graphene is particle-hole symmetric. The electronic band structure of graphene is shown
in Fig. 4.2a. It becomes apparent in this figure that the two bands touch at six points in
the first Brillouin zone, corresponding to the symmetry points K and K′. However, each
of these six points is shared in between a total of three Brillouin zones, which means that
one Brillouin zone has two independent points of this character. The fact that the valence
and the conduction band touches each other, and that the density of states (DOS) is very
small at this energy classifies graphene as a semi-metal.
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(a) (b)

Figure 4.2: Electronic band structure of graphene calculated from the tight-binding model
(4.1.12). (a) Valence (lower orange) and conduction (upper blue) band within the first
Brillouin zone. These two bands touch each other at six distinct points, called Dirac points,
denoted K and K′. (b) A close-up on one of the Dirac points, showing the low energy
linear behaviour of the spectrum.

4.1.3 Massless Dirac Hamiltonian

The vast majority of interesting features in graphene arises because of its linear low-energy
electronic spectrum near K and K′. This linearity have been depicted in Fig 4.2b, where
a close-up have been performed in the vicinity of a Dirac point (named after the conical
shape of the spectrum).

The significance of the Dirac point thus motivates an expansion around K. Writing a
new wavevector k = K + q, which have been shifted by small amount from the Dirac point
(i.e. |q|/|K| � 1), it follows, to first order in momentum, that2

φ(k) ≈ 3
2 iaqy −

3
2aqx. (4.1.13)

Inserting this equation into the Hamiltonian (4.1.11) results in
2This can be realized by inserting the definitions of δi into Eq. (4.1.10) and then Taylor expanding the

exponentials to first order in q.
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Hk ≈ ~vF

[
0 −qx + iqy

−qx − iqy 0

]
, (4.1.14)

where vF ≡ 3ta/(2~) is the Fermi velocity of the π electrons in graphene with an approxi-
mate value of vF ≈ c/300 = 1×106 [7]. The spectrum is found by calculating the eigenvalue
of this Hamiltonian, which yields

E± = ±~vF q , (4.1.15)

where q ≡ |q| =
√
q2
x + q2

y . It is thus seen that the band structure exhibits a linear behaviour
in the vicinity of the Dirac points, as was previously stated. This linearity of the spectrum
is indeed responsible for many of graphene’s profound properties. The Hamiltonian (4.1.14)
can be written in terms of the pauli matrices, which is accomplished by a transformation
to real space3

H ≈ ~vF

[
0 i∂x + ∂y

i∂x − ∂y 0

]
= −vF (σxpx + σypy) = −vFσ · p, (4.1.16)

where the pauli matrices are denoted by σx and σy. This Hamiltonian justifies the naming
of the Dirac points, since Eq. (4.1.16) mimics the Dirac Hamiltonian for fermions in two
dimensions4.

4.2 Conductivity of graphene

A response functions describes the relationship between an external perturbation and the
response of a material. Examples of such response functions could be the conductivity or
the dielectric function. It was seen in Sec. (2.2) that each of these two quantities could be
described in terms of the other, meaning that the choice between them is completely a matter
of convenience in the situation at hand. Graphene is no exception to these considerations,
meaning that the optical surface conductivity is of crucial importance when it comes to the
physics describing the response of a graphene sheet to electromagnetic radiation.

It is a common practice to divide the conductivity into two contributions. The first
contribution accounts for the possibility of electrons to perform intraband transitions within
the valence or conduction band (where momentum is not conserved), while the second
contribution describes the vertical interband transitions from the valence to the conduction
band (this process conserves momentum). The total conductivity of graphene thus takes
the form

3Conversion into real space is recognized through the momentum operator p = −i~ ∂
∂r

= ~q.
4The Dirac Hamiltonian in two dimensions for a spin 1/2 particle is given by HD = c

∑
i
αipi + βmc2,

which can be identified with Eq. (4.1.16) in the limit of zero mass, while identifying α with σ and c with vF
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σg(ω) = σintra(ω) + σinter(ω) (4.2.1)

An analytical expression can be obtained for the conductivity of graphene via Kubo’s for-
mula in the scheme of linear response theory [20, 21, 22]. The intraband conductivity with
this approach becomes [11]

σintra(ω) = σ0
π

4
~γ − i~ω

[
EF + 2kBT ln

(
1 + e−EF /kBT

)]
, (4.2.2)

where kB is Boltzmann’s constant, γ is the relaxation time, EF is the Fermi energy and σ0 is
the universal dynamic conductivity of graphene given by σ0 = e2π/2h, while the expression
for the interband transitions reads

σinter(ω) = σ0

[
G(~ω/2) + i

4~ω
π

∫ ∞
0

G(E)−G(~ω/2)
(~ω)2 − 4E2 dE

]
, (4.2.3)

where

G(x) =
sinh

(
x

kBT

)
cosh

(
EF
kBT

)
+ cosh

(
x

kBT

) . (4.2.4)

(a) (b)

Figure 4.3: (a) Illustration of the possible electron/hole transitions in doped graphene,
where the red cross imply a forbidden transition. (b) Optical conductivity of graphene
from both Drude (solid lines) and Kubo’s expression (dashed lines) in the THz regime. The
parameters have been chosen to be EF = 0.3 eV and ~γ = 3.7 meV.
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These expressions does at first glance seem relatively complicated, fortunately they can be
simplified in the limit of zero temperature [7], leading to [11]

σintra(ω) = σ0
π

4EF
~γ − i~ω

, (4.2.5)

σinter(ω) = σ0

[
Θ(~ω − 2EF ) + i

π
ln
∣∣∣∣~ω − 2EF
~ω + 2EF

∣∣∣∣] , (4.2.6)

where Θ(~ω − 2EF ) denotes the Heaviside step-function. The types of possible band tran-
sitions have been schematically illustrated in Fig. 4.3a in the case of doped graphene. The
red cross indicates a transition, which is forbidden due to the principle of Pauli blocking.
The interband conductivity (4.2.6) naturally accounts for this restriction in the Heaviside
step-function, meaning that this term yields zero contribution once 2EF > ~ω. Conse-
quently the optical conductivity of graphene can approximately be described by a single
term, which is that of the intraband Drude-like conductivity

σg(ω) ≈ σ0
π

4EF
~γ − i~ω

. (4.2.7)

For typical doping levels of graphene in room temperature, this argument holds for fre-
quencies in the THz and mid-IR regime. This simple description of graphene’s response
function is verified in Fig. 4.3b, where the approximated conductivity of graphene (4.2.7)
have been plotted together with the full conductivity (4.2.1) in the THz spectral region.
Clearly these two solutions is inseparable in this spectral region, meaning that the approx-
imated drude conductivity of graphene is indeed justified. It is expected, however, that
this approximation will start to fail once the frequency reaches a certain value, at which
interband transitions becomes significant.

4.3 Transfer-matrix method for graphene

Transfer-matrices are used in optics to describe the propagation of electromagnetic waves
through different dielectrics, conductors or a combination of both. This method utilizes
boundary conditions, in order to encapsulate the effect of multiple layers on the fields into a
single matrix, which then relates the fields at one point in space R′ given an initial point R.
It is therefore advantageous to exploit the transfer-matrix method when the problem at hand
involves the calculation of transmission and reflection coefficients in structured multilayer
systems. This method will be discussed with special attention to systems containing one or
two graphene layers.

4.3.1 Transfer-matrix for single graphene layer

The geometry at hand is shown schematically in Fig. 4.4, where the graphene layer is
positioned between two dielectrics, denoted ε1 and ε2, which is assumed to be semi-infinite.
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The transfer-matrix method deals with incoming and reflected waves in the two di-
electrics, which leads to the following magnetic field

Figure 4.4: Scattering of electromagnetic radiation on a single-layer graphene placed
at z = 0 between two dielectric media with relative permittivity ε1 and ε2. The optical
conductivity of the graphene sheet is described by σg.

B(j)
y (r, t) = (Cjeikj,zz +Dje

−ikj,zz)ei(qx−ωt)ŷ, (4.3.1)

where transverse magnetic waves have been assumed, Cj and Dj are constants to be deter-
mined and j denotes medium index. Inserting this magnetic field into Maxwell’s equation
(2.1.12d) yields the electric field

E(j)
x (r, t) = kj,zc

2

ωεj
(Cjeikj,zz −Dje

−ikj,zz)ei(qx−ωt)x̂, (4.3.2)

where kj,z is given by

kj,z =

√
εj
ω2

c2 − q
2. (4.3.3)

The boundary conditions across the graphene interface is then introduced in order to relate
the field amplitudes in the two dielectrics. These boundary conditions is given by

E(1)
x (z = 0) = E(2)

x (z = 0), (4.3.4)
B(1)
y (z = 0)−B(2)

y (z = 0) = µ0σgE
(1)
x (z = 0), (4.3.5)

demonstrating the continuity and discontinuity of the tangential components of the the
electric and magnetic field respectively, and where σg expresses the optical conductivity of
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graphene. Substituting the fields in Eq. (4.3.1) and (4.3.2) into the boundary conditions
leads to a system of linear equations containing the field amplitudes, which can be cast into
a single matrix equation

[
1 −1
1 1

] [
C1
D1

]
=
[

η1 −η1
1 + ξσ,1 1− ξσ,1

] [
C2
D2

]
, (4.3.6)

where the following definitions have been used

η1 = ε1k2,z
ε2k1,z

and ξσ,1 = σgk2,z
ωε0ε2

, (4.3.7)

with the subscript 1 referring to the first interface, which will be convininent for future
purposes. The relation between the amplitudes in medium one and two is then given by

[
C1
D1

]
= T1→2

[
C2
D2

]
, (4.3.8)

where T1→2 is the single layer graphene transfer matrix, reading

T1→2 = 1
2

[
1 + η1 + ξσ,1 1− η1 − ξσ,1
1− η1 + ξσ,1 1 + η1 − ξσ,1

]
. (4.3.9)

The elements of this transfer-matrix5 can now be used to derive the reflection and trans-
mission coefficients for a single graphene layer via [23]

r = T 1→2
21
T 1→2

11
and t = 1

T 1→2
11

. (4.3.10)

The norm squared of the transmission, t, and reflection coefficient, r, yields the transmit-
tance and the reflectance

TSLG = ε1k2,z
ε2k1,z

∣∣∣∣∣ 2
1 + η1 + ξσ,1

∣∣∣∣∣
2

and RSLG =
∣∣∣∣∣1− η1 + ξσ,1
1 + η1 + ξσ,1

∣∣∣∣∣
2

, (4.3.11)

respectively. It is then straight forward to evaluate the absorbance

5The following notation will be adapted T1→2 =
[
T 1→2

11 T 1→2
12

T 1→2
21 T 1→2

22

]
.
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ASLG = 1− TSLG −RSLG . (4.3.12)

Assuming that the light beam approaches the graphene sheet at normal incidence leads to
the following transmittance

T normalSLG =
√
ε1
ε2

∣∣∣∣∣ 2√ε2√
ε1 +√ε2 + σg

cε0

∣∣∣∣∣
2

, (4.3.13)

while the reflectance becomes

RnormalSLG =
∣∣∣∣∣
√
ε2 −

√
ε1 + σg

cε0√
ε2 +√ε1 + σg

cε0

∣∣∣∣∣
2

. (4.3.14)

This transmittance, reflectance and the corresponding absorbance is plotted as a function
of frequency in Fig. 4.5b for a single layer of graphene surrounded by air on both sides. An
interesting thing to note here, is that the absorbance is frequency independent at frequencies
corresponding to visible light, with a value of approximately 2.3%, which constitute the
universal absorption of a single-layer graphene. This result may be derived in an alternative
way, using the fine-structure constant, given in appendix A.1.

4.3.2 Transfer-matrix for double graphene layer

One of the great advantages of the transfer-matrix method lies in the straight forward
generalization to double- or multi-layered graphene structures. For instance, the overall
transfer-matrix for a double-layered graphene system, where the two graphene layers is
separated by a dielectric medium of thickness d, is simply given by two transfer-matrices
with identical structure as (4.3.9) and a propagation matrix, P2(d), describing the plane
wave propagation of the electromagnetic beam in medium 2. This reasoning thus enables
the writing of the double-layer graphene transfer-matrix without any further calculations

T1→3 = T1→2 ·P2(d) ·T2→3, (4.3.15)

where the propagation matrix are given by

P2(d) =
[
e−ik2,zd 0

0 eik2,zd

]
. (4.3.16)
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(a) (b)

Figure 4.5: (a) Illustration of double layered graphene system exposed to electromagnetic
radiation at normal incidence. The graphene sheets is placed at z = 0 and z = d and sepa-
rated by a dielectric medium of distance d with corresponding permittivity ε2. The matrices
describing the propagation of the radiation is shown to the left of the figure. (b) Transmit-
tance, reflectance and absorbance of a single-graphene layer as a function of the frequency.
The light beam is assumed approach the graphene sheet at normal incidence. The subfigure
illustrates the frequency-independent absorption of graphene at visible wavelengths, with a
value of ≈ 2.3% represented by the black-dotted line. Parameters: ε1 = ε2 = 1, EF = 0.1
eV and ~γ = 8 meV.

The meaning of these matrices is schematically illustrated in Fig 4.5a, where the electro-
magnetic radiation is assumed to hit the graphene layers at normal incidence. The trans-
mittance, reflectance and absorbance now follows naturally by replacing 1→ 2 by 1→ 3 in
Eq. (4.3.9) [11]

TDLG = ε1k3,z
ε3k1,z

∣∣∣∣ 1
T 1→3

11

∣∣∣∣2 , (4.3.17)

RDLG =
∣∣∣∣∣T 1→3

21
T 1→3

11

∣∣∣∣∣
2

, (4.3.18)

ADLG = 1− TDLG −RDLG. (4.3.19)

Clearly these equations resembles an identical structure as for the single-layer graphene
equations. In fact, the form of equation (4.3.17)-(4.3.19) remains the same for a system
of N graphene layers, where N can take any positive finite number. The transfer-matrix
method is therefore a good candidate to compute the band-structure of photonic crystals
[11].
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Chapter 5

Plasmonic Excitation in Graphene

The unique electronic properties of graphene, together with its two-dimensional nature
makes this material a very interesting prospect in the field of plasmonics [11]. Doped
graphene does not experience significant damping from interband transitions in the THz and
mid-IR part of the electromagnetic spectrum (as discussed in Sec. (4.2)) and is therefore able
to sustain plasmonic excitations in this regime. One favourable aspect of graphene surface
plasmons (GSPs), as compared to the conventional SPPs at surfaces of three-dimensional
(3D) conductors, is the relationship between the Fermi level and the corresponding frequency
of the plasmon resonance. This means, in other words, that the GSP is tunable simply by
adjusting the doping level in the graphene sheet. Additionally, GSPs are able to attain
small losses, thus achieving relatively long lifetimes.

This chapter will mainly be concerned with the description of the dispersion relation
for GSPs in the case of single and double graphene interfaces. This will equip us with the
information needed in order to discuss properties like field confinement, propagation length
and tuneability.

5.1 Single Graphene Interface

The simplest imaginable system able to sustain GSPs, is that of a single planar infinite
graphene sheet separating two semi-infinite dielectric mediums. This geometry has been
depicted in Fig. 5.1a. The graphene sheet is located at z = 0 and the dielectric constant of
the two dielectric media has been denoted ε1 and ε2.
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(a) (b)

Figure 5.1: Drawing of a monolayer graphene located between two dielectric media with
dielectric constants ε1 and ε2, referring respectively to the z < 0 and z > 0 half-spaces. The
graphene sheet is placed at z = 0.

5.1.1 GSP dispersion relation

TM-waves (p-polarized electromagnetic waves) will serve as the starting point for inves-
tigating the dispersion relation of GSPs. This derivation very much goes along the same
lines as for the SPP at a single dielectric-metal interface in Sec. (3.1.1). The electric and
magnetic fields in the two dielectric media is, in this case, given by Eq. (3.1.1). Inserting
these fields into Maxwell’s curl equations (2.1.12c) and (2.1.12d) yields

Ej,x = isj
κjc

2

ωεj
Bj,y (5.1.1)

Ej,z = − qc
2

ωεj
Bj,y (5.1.2)

The tangential boundary conditions, which links the electromagnetic fields on the two sides
of the graphene sheet together is given by Eq. (2.1.16c) and (2.1.16d), and reads

E1,x(x, z)|z=0 = E2,x(x, z)|z=0, (5.1.3)
B1,y(x, z)|z=0 −B2,y(x, z)|z=0 = µ0Jx(x) = µ0σxxE2,x(x, z)|z=0. (5.1.4)

These two boundary conditions describe the continuity of electric field and the discontinuity
of the magnetic field across the interface occupied by the graphene sheet. It is assumed that
the graphene sheet has zero extension along the z-axis, meaning that it can be regarded
as a truly two-dimensional material, where the frequency dependent conductivity σ(ω)
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incorporates all the electromagnetic properties. The GSP dispersion relation is now derived
by inserting the fields into the boundary conditions (5.1.3) and (5.1.4), which leads to [11]

ε1
κ1(q, ω) + ε2

κ2(q, ω) + i
σ(ω)
ωε0

= 0 , (5.1.5)

where κj is given by Eq. (3.1.3). The conductivity in Eq. (5.1.5) is a function of the
frequency, while κj is a function of both the frequency and the wavevector. Thus it becomes
apparent, that this dispersion relation is an implicit equation, which cannot be solved
analytically. Consequently one has to rely on numerical methods in order to even solve this
simple geometry.
It is seen that the third term of the GSP dispersion relation (5.1.5) contains an imaginary
unit, accordingly this equation only has real solutions when the real part of the conductivity
is zero and the imaginary part is positive. Contrary, the dispersion relation delivers com-
plex solutions in the case of a non-zero real part of the conductivity. This does not come
as a surprise, since it is well-known that the real part of the conductivity is related to the
attenuation in the system. The solutions to the dispersion relation will now be discussed in
the case of zero damping (γ = 0) and a non-zero damping (γ 6= 0).

Zero damping (γ = 0):
It was seen in Sec. (4.2) that the optical conductivity of graphene could be described by a
Drude-like expression

σ(ω) = σ0
4i
π

EF
~ω + i~γ

, (5.1.6)

for the frequency interval between THz and mid-IR, if EF � kBT and EF � ~ω. This
conductivity is now substituted into the GSP dispersion relation and solutions is then
calculated numerically for γ = 0, the result is shown in Fig. 5.2a. This spectrum of the
GSP very much resembles the same behaviour as the ordinary SPP dispersion relation at
metal-dielectric interfaces discussed in Sec. (3). However, the main difference is that the
GSP is able to sustain high field confinement in the THz to mid-IR frequency interval, as
opposed to the free light-like behaviour of dielectric-metal SPPs in this regime.

The dispersion relation once again lies to the right of the corresponding light line, which
demonstrates the bound nature of the GSP. It is therefore necessary to implement special
techniques in order to excite these types of plasmons in flat graphene, example of such a
technique will be discussed in the form of the Otto configuration in Sec. (B.1). The great
advantage of GSPs being tunable via doping is seen as the appearance of the Fermi level in
Eq. (5.1.6). The frequency which satisfies the resonance condition of the GSP is therefore
increased for an increase in the Fermi level, this behaviour have been illustrated in Fig.
5.2b.
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(a) (b)

Figure 5.2: (a) Spectrum of TM GSPs for an air/graphene/air geometry (solid blue
curve) and for an air/graphene/SiO2 structure (solid orange curve), in which the graphene
conductivity have been modelled without damping (γ = 0). The dashed straight lines
corresponds to the light lines in air (green) and in SiO2 (red). The following parameters
have been used: EF = 0.45 eV, ε1 = 1 and ε2 = 3.9. (b) Lossless single graphene sheet
dispersion relation for different values of the Fermi level in an air/graphene/air geometry
(ε1 = ε2 = 1).

Non-zero damping (γ 6= 0):
In the case of zero damping, then the conductivity is purely imaginary and hence the
wavevectors solving the dispersion relation is real. When the damping is non-zero, on
the other hand, then the wavevectors becomes complex instead, q = q′ + iq′′, where the
imaginary part is identified with the damping. The spectrum for TM GSPs for different
values of the damping parameter have been depicted in Fig. 5.3.

It is seen that the dispersion relation crosses the light line at small wavevectors, which is
in opposition to the previously discussed SPP and GSP dispersion relations. One would then
expect that GSPs could be excited by direct exposure of electromagnetic waves. However,
this is not the case, since the region for small wavevectors constitute the overdamped regime
(ω/γ < 1), at which GSPs can’t exist. Further notice that the frequency increases when
the damping parameter is raised towards larger values. This change in the spectrum is
only observed for sufficiently small wavevectors, which has been shown in the subfigure. On
the other hand, the modes becomes indistinguishable when the frequencies approach larger
values.
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Figure 5.3: Numerical solu-
tion to Eq. (5.1.5) using dif-
ferent non-zero values of the
damping parameter Γ ≡ ~γ.
The solution with zero damp-
ing (Γ = 0) in the plot serves
as a comparison to the atten-
uated modes and the dashed
lines illustrate the light lines
in the dielectric mediums. A
zoom onto small wavevectors
have been performed in the sub-
figure, where the axis labels are
identical to the main figure. Pa-
rameters: ε1 = 1, ε2 = 4 and
EF = 0.5 eV.

5.1.2 Penetration depth and field confinement for GSPs

Although the GSP dispersion has to be solved numerically, it is possible to simplify the
expression by assuming a symmetric geometry, in which ε1 = ε2, thus Eq. (5.1.5) becomes

1 + i
σ(ω)
2ωεε0

√
q2 − εω

2

c2 = 0, (5.1.7)

where ε = (ε1 +ε2)/2 denotes the average value of the dielectric constants. The propagation
length and field confinement can now be analysed by inserting the full complex drude
conductivity (5.1.6) into the simplified dispersion relation (5.1.7) and isolating for κ(q, ω)

κ(q, ω) = ε~
2αc

(ω2 + iγω)
EF

. (5.1.8)

The field confinement can now be found by substituting (5.1.8) into the expression for
penetration depth (3.1.12), which yields

ζGSP = 1
Re{κ} = 2α~c

ε

EF
(~ω)2 . (5.1.9)

Thus the field confinement of the GSP resembles the same frequency dependence, as for
the SPP in the dielectric medium, meaning that it increases (decreases) for larger (smaller)
frequencies (see Fig. 3.3b), provided that the doping level is held constant.
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The GSP dispersion in the symmetric environment can be further simplified in the
electrostatic limit (κ→ q). This wavevector does, in general, take complex values (assuming
real valued frequencies) because of the fact that the damping parameter is non-zero, and
the dispersion relation reads

q′ + iq′′ ≈ ε~
2αc

(ω2 + iγω)
EF

. (5.1.10)

It is then straight forward to read of the real and imaginary part of the wavevector from
(5.1.10), which yields

q′ = ε

2α~c
(~ω)2

EF
, (5.1.11)

q′′ = ε~
2αc

γω

EF
. (5.1.12)

Now the GSP propagation length is evaluated by substituting the imaginary part into Eq.
(3.3a), defining the point at which the GSP intensity has fallen off by 1/e, obtaining

LGSP = 1
2q′′ = αc

ε~
EF
γω

. (5.1.13)

This length does, as anticipated, decrease with an increased damping parameter in the case
of a constant doping level.

5.1.3 Numerical example of GSP localization

The wavelength of the GSP can be obtained using the real part of the wavevector λGSP =
2π/Re{q′}. Comparing the GSP wavelength with that of light in vacuum, λ0, yields

λGSP
λ0

= α

ε

2EF
~ω

. (5.1.14)

Assuming a situation, at which a plane graphene sheet is placed between a piece of SiO2
with εSi02 = 4, and air with εair = 1, the average dielectric environment becomes ε = 2.5.
Using a doping level of EF = 0.3 eV and frequency of ω/2π = 12 THz, we get a ratio of
λGSP /λ0 ≈ 0.036. This means that the wavelength of the GSP is significantly smaller as
compared to the wavelength of the incoming light. The frequency of 12 THz corresponds to
a wavelength of λ0 ≈ 25 µm, which according to the calculated ratio leads to λGSP ≈ 880
nm. This degree of localization by far exceeds the diffraction limit defining the minimal
distance by which one can separate two airy discs in a microscope. It becomes apparent
that the confinement of the GSPs increases with an increase of the frequency. However a
natural upper bound exists for this confinement, which is related to the Fermi frequency
ωF~ = EF . Electromagnetic radiation with frequencies beyond this value will contribute to
interband transitions and hence intensify the losses in the system.
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5.1.4 Single-layer graphene fields profile of GSPs

The fields of the derived p-polarized GSP dispersion relation in single-layer graphene (SLG)
can be explicitly visualized by some simple considerations. The visualization in this section
will be done for the electric field, although it should be mentioned that an identical procedure
could be done for the magnetic field as well.

First a characteristic frequency ωc is introduced in Eq. (5.1.5), then the equation is
solved numerically in order to retrieve the corresponding characteristic wavevector qc. Com-
bining the expressions for the electric field amplitudes in Eq. (5.1.1) and (5.1.2) yields

Ej,z = isj
q

κj
Ej,x. (5.1.15)

The amplitudes is now normalized with E1,x, so that the field components reads

E1,x = 1, (5.1.16)

E1,z = −i qc
κ1(qc, ωc)

, (5.1.17)

E2,x = 1, (5.1.18)

E2,z = i
qc

κ2(qc, ωc)
, (5.1.19)

where the boundary condition (5.1.3) have been utilized. The electric vector field is evalu-
ated by insertion of these components into

EGSP (r) = Ex(x, z)x̂+ Ez(x, z)ẑ, (5.1.20)

where Ex and Ez in the two dielectric mediums is given by

Eµ(x, z) =
{

Re{E1,µe
−κ1|z|eiqx}, if z ≤ 0

Re{E2,µe
−κ2|z|eiqx}, if z > 0

, (5.1.21)

with µ = x, z. These electric fields is shown in Fig. 5.4. The upper figure illustrates a
vectorial density plot of the total field, which have been evaluated from Eq. (5.1.20), while
the middle and lower figure represents a density plot of the x- and z-component respectively.
The collective nature of the GSPs is clear in these figures, with alternating strong and weak
electric fields as one moves along the x-axis in the vicinity of the graphene sheet (solid black
line). Further notice the exponential decay of the field intensity when the distance to the
graphene plane increases. Finally the symmetric and antisymmetric behaviour of the x-
and z-component, respectively, becomes apparent in the middle and lower figure.
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Figure 5.4: Illustration of the electric fields due to propagating TM GSPs in
SiO2/graphene/air structure. The black solid line at z = 0 indicates the graphene sheet.
Parameters: γ = 0, εair = 1, εSiO2 = 3, 8, ωc = 2π · 1THz and qc = 0, 051µm.
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5.2 Double Graphene Interface

The case of a system with two sheets of doped graphene separated by a distance d is now
examined. The middle medium is assumed to be that of a dielectric with dielectric constant
ε2, and the two surrounding media is denoted by ε1 and ε3 for the upper and lower medium,
respectively. The structure at hand have been depicted in Fig. 5.5.

Figure 5.5: Illustration of a double-layer graphene geometry. The two graphene sheets,
located at z = 0 and z = d, are separated by dielectric medium of thickness d and dielectric
constant ε2. The upper and lower media, defined by the relative permittivities ε1 and ε3
respectively, is assumed to be semi-infinite.

5.2.1 Spectrum of double-layer graphene geometry

The derivation of the double-layer graphene (DLG) spectrum does, in general, follow the
same procedure as for the ordinary double dielectric-metal interface SPPs. Solutions to
Maxwell’s equations is therefore assumed to take the form of Eq. (3.1.1) for the medium at
z < 0 and z > d, while a superposition of exponentially growing and decaying waves takes
place in the middle medium (0 > z > d) given by Eq. (3.2.1a) and (3.2.1b). The boundary
conditions at the z = d interface reads

E
(+)
2,x e

κ2d + E
(−)
2,x e

−κ2d = E3,xe
−κ3d, (5.2.1)

B
(+)
2,y e

κ2d +B
(−)
2,y e

−κ2d −B3,ye
−κ3d = µ0σ(ω)E3,xe

−κ3d, (5.2.2)

and

E1,x = E
(+)
2,x + E

(−)
2,x , (5.2.3)

B1,y = B
(+)
2,y +B

(−)
2,y + µ0σ(ω)E1,x, (5.2.4)

for the z = 0 interface, where identical doping levels for the two graphene sheets have been
assumed. These boundary conditions together with the expressions relating the amplitudes
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of the magnetic and electric field in upper and lower medium in Eq. (3.1.2a)-(3.1.2b) and
in the middle medium (3.2.2a)-(3.2.2d), form a system of linear equations, which can be
written in the following matrix form


−1 1 1 0

ε1
κ1

+ i σ
ωε0

− ε2
κ2

ε2
κ2

0
0 eκ2d e−κ2d −e−κ3d

0 ε2
κ2
eκ2d − ε2

κ2
e−κ2d

(
ε3
κ3

+ i σ
ωε0

)
e−κ3d



E1,x

E
(+)
2,x

E
(−)
2,x
E3,x

 = 0. (5.2.5)

The condition for a non-trivial solutions is then found by setting the determinant of the
matrix in Eq. (5.2.5) equal to zero, which after some algebra leads to [11]

e−κ2d
(
ε3
κ3

+ i
σ

ωε0
− ε2
κ2

)(
ε1
κ1

+ i
σ

ωε0
− ε2
κ2

)
= eκ2d

(
ε3
κ3

+ i
σ

ωε0
+ ε2
κ2

)(
ε1
κ1

+ i
σ

ωε0
+ ε2
κ2

)
.

(5.2.6)

A plot of this DLG dispersion relation is given in Fig. 5.6. This spectrum share some of the
features from the MDM and DMD SPPs discussed in Sec. (3.2). The interaction of fields
from the two grapene sheets in the middle medium create hybridized modes, assuming
that the spacing, d, between the graphene layers is sufficiently small. Consequently this
perturbation removes the degeneracy in the system, and two distinct modes appears; one
with a larger frequency, called the optical mode, and one with a smaller frequency, which
is dubbed the acoustic mode. Two different separations is shown in Fig. 5.6, which is
100nm (solid lines) and 400nm (dot-dashed lines). It becomes obvious from these two
separations that the ”communication” between the fields, and hence the splitting of the
modes, increases when the spacing decreases. The black dashed line represents the SLG
spectrum, thus serving as a point of reference.

A way to verify the sense of Eq. (5.2.6) is to take the limit κ2d→∞, which yields

(
ε3
κ3

+ i
σ

ωε0
+ ε2
κ2

)(
ε1
κ1

+ i
σ

ωε0
+ ε2
κ2

)
= 0. (5.2.7)

This corresponds to the derived spectrum of a SLG (5.1.5). The first parenthesis in Eq.
(5.2.7) represents the graphene interface separating medium 2 and 3, while the second
parenthesis describes the graphene interface separating medium 1 and 2.
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Figure 5.6: TM GSP dis-
persion relation in a double-
layer graphene structure for d =
100nm (solid lines) and d =
400nm (dot-dashed lines). The
black dashed line represents the
dispersion relation of a single-
layer graphene, to which the
splitting of the spectrum can be
compared to. Paramters: ε1 =
ε2 = ε3 = 1, γ = 0 and EF =
0.45 eV.

5.2.2 Alternative approach to DLG dispersion

The transfer-matrix method for SLG and DLG configurations were discussed previously
in Sec. (4.3), which resulted in the reflection and transmission coefficients. It turns out
that this method can also be used to derive the condition for plasmonic excitations in any
structured N-layer graphene system.

Taking a DLG system, as the one depicted in Fig. 5.5, into consideration, the transfer
matrix for the whole geometry is given by T1→3 in Eq. (4.3.15), where T2→3 takes the
same form as T1→2, but with η2 and ξσ,2 instead of η1 and ξσ,1. The subscripts refers to
the interface at which the quantity is defined, so that

η2 ≡
ε2k3,z
ε3k2,z

and ξσ,2 ≡
σgk3,z
ωε0ε3

. (5.2.8)

The condition for plasmonic excitation in the DLG geometry is found as the poles of the
reflection coefficient, which is to say that T1→3

11 = 0 since rDLG = T1→3
21

T1→3
11

. Calculating the
matrix equation for T1→3 explicitly with the definitions given in Eq. (4.3.7) and Eq. (5.2.8),
and setting T1→3

11 = 0 leads to

e−ik2,zd [1 + η2 + ξσ,2 − η1 − η1η2 − η1ξσ,2 + ξσ,1 + η2ξσ,1 + ξσ,1ξσ,2]
= eik2,zd [−1 + η2 − ξσ,2 + η1 − η1η2 + η1ξσ,2 + ξσ,1 − η2ξσ,1 + ξσ,1ξσ,2] . (5.2.9)

Inserting the definitions of η1, η2, ξσ,1 and ξσ,2 and using that kj,z = i
√
q2 − εjω2/c2 ≡ iκj

simplifies Eq. (5.2.9) to
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eiκ2d
(
ε3
κ3

+ i
σg
ωε0
− ε2
κ2

)(
ε1
κ1

+ i
σg
ωε0
− ε2
κ2

)
= eκ2d

(
ε3
κ3

+ i
σg
ωε0

+ ε2
κ2

)(
ε1
κ1

+ i
σg
ωε0

+ ε2
κ2

)
,

(5.2.10)

which is identical to the DLG dispersion relation derived in Sec. (5.2.1). This method works
in the case of a single graphene layer as well, where the dispersion relation is derived using
the poles of the SLG reflection coefficient instead. Finally it is worth to mention that this
procedure can be extended to the ordinary SPPs; The only difference in this case is that
σg(ω) = 0, so that the transfer-matrix across the interface separating the dielectric and the
conducting material reads

TSPP
1→2 =

[
1 + η1 1− η1
1− η1 1 + η1

]
. (5.2.11)
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Chapter 6

Plasmons in Parabolic Waveguides

So far the optical features of SPPs at a metal-dielectric interface and GSPs in flat SLG
and DLG structures have been investigated. The findings from these discussions inspire a
different group of structures called SPP waveguides. One type of such structures utilizes a
metal gap between two dielectrics, also called a DMD waveguide. An example of a DMD
waveguide could be that of a parabolic shaped metal surrounded by a dielectric medium1.
One of the prominent advantages of SPP waveguides, is their ability to confine light in
the vertical direction as well as the direction parallel to the interface, effectively creating
a 1D channel for the wave to propagate in (herein the name waveguide). This degree of
confinement thus exceeds that of the SPPs propagating along a flat interface, at which only
vertical confinement exists.

The first part of this chapter deals with the theoretical description of surface plasmons
propagating along a parabolic shaped waveguide, where the dispersion relation is derived.
The second part extends the developed ideas from the first part, working out the dispersion
relation for graphene plasmons propagating along parabolic-shaped dielectric bulges and
valleys.

6.1 Parabolic Waveguides

This section works out the theoretical description of plasmons propagating along a waveg-
uide with a parabolic-shaped interface, separating two semi-infinite dielectric mediums.
The system under consideration have been schematically illustrated in Fig. 6.1, where ε1
and ε2 denotes the dielectric function of the medium making up the surroundings and the
parabola, respectively. It is convenient to apply the parabolic cylinder coordinates, denoted
ξ, η and z, in order to solve a problem of this character. The transformation between these
coordinates and the ordinary Euclidean coordinates reads

1Although it should be mentioned that a variety of differently shaped waveguides exists in the literature
to this date. Examples of such shapes is triangular wedges and grooves, which have been investigated in a
graphene-covered version by [24]
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x = ξη, (6.1.1)

y = 1
2
(
η2 − ξ2

)
, (6.1.2)

z = z, (6.1.3)

where −∞ ≤ ξ ≤ ∞ and 0 ≤ η ≤ ∞. The interface separating the two domains can then
simply be understood in terms of the η coordinate, meaning that η < η0 is occupied by the
parabolic channel, while η > η0 is occupied by the surrounding medium.

Now, this system can be handled in two different scenarios: One can assume that a
non-zero current exist at the interface, which is to say that σ2D(ω) 6= 0, or the system may
be solved in the more simple case, where σ2D(ω) = 02. This section will deal with the latter
approach, while Sec. (6.2) deals with the former.

Figure 6.1: Schematic illustration of
the cross section through a parabolic
waveguide in the xy-plane. The in-
terface of the waveguide at η = η0
separates two semi-infinite mediums,
where the dielectric function of the
material restricted to the region η < η0
is denoted ε2, while the dielectric func-
tion of the medium occupying η > η0
is given by ε1. In Sec. (6.1) the dis-
persion relation is worked out in the
case of σ2D(ω) = 0, whereas the same
structure covered with graphene is an-
alyzed in Sec. (6.2), i.e. σ2D(ω) 6= 0.

6.1.1 Dispersion relation

The dispersion relation will be derived in the electrostatic limit, which means that the
modes of the parabola is found through solutions to Laplace’s equation ∇2Φ = 0, where
Φ denotes the electrostatic potential given by Φ(ξ, η, z, t) = φ(ξ, η, z)eiωt. Assuming that
the system under consideration is translational invariant along the z-direction, the scalar
potential for the electromagnetic field can be decomposed to

2This geometry have been considered in Refs [25, 26]
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Φ(r) = φ(ξ, η)eiqz, (6.1.4)

where the harmonic time dependence have been explicitly assumed and will be so throughout
the rest of the derivation. Inserting this potential into Laplace’s equation yields

∇2Φ = 1
ξ2 + η2

[
∂2φ(ξ, η)
∂ξ2 + ∂2φ(ξ, η)

∂η2

]
− q2φ(ξ, η) = 0, (6.1.5)

where the Laplacian in parabolic cylinder coordinates have been used. This partial dif-
ferential equation can be solved using separation of variables. In order to carry out this
calculation, the potential φ(ξ, η) is split into two functions, F (ξ) and G(η), describing the
ξ and η dependence respectively, which lead to the following two differential equations

−∂2F (ξ)
∂ξ2 +

[
q2ξ2 − E

]
F (ξ) = 0, (6.1.6)

∂2G(η)
∂η2 −

[
q2η2 + E

]
G(η) = 0, (6.1.7)

where E denotes the separation constant. It becomes apparent that Eq. (6.1.6) is similar to
the Schrödinger equation of the quantum harmonic oscillator3, to which the eigenmodes are
well-know. The functions solving this differential equation is therefore, by analogy, given
by

F (ξ) = Cn,qe
−qξ2/2Hn(√qξ), (6.1.8)

where Hn is the n’th Hermite polynomial and the separation constant takes the following
discrete values

E = q(2n+ 1), (6.1.9)

for n = 0, 1, 2, ..., . The normalization constant is given by

Cn,q = 1√
2nn!

(
q

π

)1/4
, (6.1.10)

3The Schrödinger equation for the harmonic oscillator with ~ = m = 1 reads − 1
2
∂2φ
∂x2 +( 1

2ω
2x2−E)ψ = 0.

Multiplying this equation through by 2 and utilizing the transformations ω → q and x → ξ leads to
∂2F (ξ)
∂ξ2 + (E′ − q2ξ2)F (ξ) = 0, where E′ = 2E = q(2n+ 1).
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which means that the solution to Eq. (6.1.6), and consequently Eq. (6.1.7), can be labelled
by the discrete number n. The potential can now be written as Φ(ξ, η, z) = Φn,q(ξ, η, z)
to show its dependence on the discrete number, n, as well as the continuous wavevector,
q [25]. The differential equation describing the η dependence is now written in terms of a
new variable µ = η

√
2q, which leads to

∂2G(η)
∂µ2 −

[
n+ 1

2 + µ2

4

]
G(η) = 0. (6.1.11)

This equation is identified with the parabolic cylinder differential equation with solutions
given by the parabolic cylinder functions U

(
n+ 1

2 , µ
)

and V
(
n+ 1

2 , µ
)

[27]. V and U

increases and decays exponentially with µ respectively, which leads to the choice of V
being the solution inside the parabolic channel and U the solution outside of it. This
choice of solutions ensures the localized nature of the modes to the interface of the channel.
Combining the solutions of the two differential equations (6.1.6) and (6.1.7) yields

Φn,q(ξ, η) =

An,qFn(ξ)U
(
n+ 1

2 , η
√

2q
)
eiqz for η ≥ η0,

Bn,qFn(ξ)V
(
n+ 1

2 , η
√

2q
)
eiqz for η ≤ η0.

(6.1.12)

As usual, the potential at each side of the interface is related by appliance of the appropriate
boundary conditions, which in this case is the continuity of the electric potential and the
normal component of the electric displacement field across the interface separating the two
dielectric mediums, I.e.

φn1 (ξ, η)
∣∣∣
η=η0

= φn2 (ξ, η)
∣∣∣
η=η0

, (6.1.13)

and

ε1
∂φn1 (ξ, η)

∂η

∣∣∣
η=η0

= ε2
∂φn2 (ξ, η)

∂η

∣∣∣
η=η0

, (6.1.14)

where φn1 and φn2 denotes the potential of the n’th mode in the surrounding medium and
the parabolic channel respectively. Substituting the electrostatic potential in Eq. (6.1.12)
into these boundary conditions leads to the following condition for the spectrum of the
electrostatic surface modes localized at the apex of the parabolic channel

ε2 = ε1
V
(
n+ 1

2 , η0
√

2q
)
U ′
(
n+ 1

2 , η0
√

2q
)

U
(
n+ 1

2 , η0
√

2q
)
V ′
(
n+ 1

2 , η0
√

2q
) , (6.1.15)
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where the prime denotes the differential with respect to the argument.
Assuming that the parabolic channel is made up of a free electron lossless Drude metal,

I.e ε2 = 1− ω2
p/ω

2, and surrounded by a dielectric medium with ε1, the dispersion relation
becomes

ωn(q) = ωp

1− ε1
V
(
n+ 1

2 , η0
√

2q
)
U ′
(
n+ 1

2 , η0
√

2q
)

U
(
n+ 1

2 , η0
√

2q
)
V ′
(
n+ 1

2 , η0
√

2q
)
−1/2

(6.1.16)

This dispersion relation of the electrostatic surface modes at the edge of the parabolic
channel have been shown in Fig. 6.2, where the first four modes are shown together. The
even values of n corresponds to even modes with respect to ξ = 0, while odd values of n leads
to odd modes instead. It is clearly seen that all the modes approaches the same asymptotic
value, which is that of the surface plasmon frequency for a flat dielectric-metal interface,
ωsp, illustrated by the black-dashed line. Since the normalized first axis is given by η0

√
2q,

there is two ways to verify this limit, which is in terms of the wavevector q and the fixed
coordinate η0. Arguing in terms of the wavevector, it is seen that the asymptotic value
is reached when the wavevector goes toward large values. Consequently the wavelength
approaches zero since λSPP = 2π

qSPP
, which means that the apex of the parabolic channel

appears as a flat interface to the SPP, and thus ωsp is re-established. On the other hand, if
η0 tends to∞, then the curvature of the parabola tends to zero, meaning that the interface
approaches that of a flat surface.

An alternative approach to this derivation is given in appendix (C), where plasmonic
excitations at the apex of a hyperbolic shaped waveguide is discussed.

Figure 6.2: Plot of the
dispersion relation related
to the electrostatic sur-
face modes of the parabolic
channel. The first four
modes is shown by the col-
ored lines, while the black-
dashed line indicates the
surface plasmon frequency
ωsp as a reference point.
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6.2 Graphene-covered parabolic waveguide: Bulges and Val-
leys

The procedure developed in the previous section is now performed on a dielectric channel
of the same structure, i.e. parabola, but now covered in a sheet of graphene. Consequently
a charge density is introduced at the interface separating the channel from the surrounding
dielectric, defined as η = η0. One can think of two different versions of such a case, which is
the parabolic bulge and valley, these structures have been sketched in Fig. 6.3. Graphene
plasmons propagating along this bulge and valley will be denoted bulge graphene plasmons
(BGPs) and valley graphene plasmons (VGPs) respectively.

Figure 6.3: Left picture illustrates a channel plasmon polariton propagating along the
apex of a graphene-covered parabolic bulge, while the right picture shows the same thing
but along the graphene-covered parabolic valley.

The surface charge density leads to a surface conductivity, which effectively encapsulates
the response of graphene to the electromagnetic radiation.

Once again, the dispersion relation is derived using the electrostatic limit. However,
with graphene present at the interface, the plasmon excitations is found as the solution
to Poisson’s equation ∇2Φ(r) = ρ(r)

ε0
, as opposed to Sec. (6.1), where the modes were

derived using Laplace’s equation. Thus the problem at hand deals with an inhomogeneous
partial differential equation, which is solved by a linear combination of the solutions to the
corresponding homogeneous equation. Consequently the electric potential in medium 1 and
2 is given by

φ1(ξ, η) =
∑
n

AnFn(ξ)U
(
n+ 1

2 , η
√

2q
)
, (6.2.1)

and
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φ2(ξ, η) =
∑
n

BnFn(ξ)V
(
n+ 1

2 , η
√

2q
)
, (6.2.2)

respectively. The definitions Yn ≡ Y
(
n+ 1

2 , µ
)
, Y 0

n ≡
(
n+ 1

2 , µ0
)

and Y ′0n ≡ ∂Yn
∂η

∣∣
η=η0

, with
Y = {U, V } and µ0 = η0

√
2q will be used in the rest of this section in order to shortening

the notation. The presence of the graphene sheet at the interface, η = η0, modifies the
boundary conditions from Sec. (6.1) to

φ1(ξ, η)
∣∣∣
η=η0

= φ2(ξ, η)
∣∣∣
η=η0

, (6.2.3)

and

ε1
∂φ1(ξ, η)

∂η

∣∣∣
η=η0

− ε2
∂φ2(ξ, η)

∂η

∣∣∣
η=η0

= ρ2D(ξ, η = η0)
ε0

. (6.2.4)

The charge density ρ2D(ξ, η = η0) can be expressed in terms of the potential using the
continuity equation in combination with Ohm’s law4

ρ2D(ξ, η = η0) = iσ2D(ω)
ω

[
1

ξ2 + η2
∂2φ1(ξ, η)

∂ξ2 − q2φ1(ξ, η)
] ∣∣∣∣∣
η=η0

. (6.2.5)

Inserting this expression together with the potentials from Eq. (6.2.1)-(6.2.2) into the
boundary condition in Eq. (6.2.4) leads to

∑
n

An
ε1√

ξ2 + η2
0

Fn(ξ)U ′0n
√

2q −
∑
m

Bm
ε2√

ξ2 + η2
0

Fm(ξ)V ′0m
√

2q

= σ2D(ω)
iωε0

 1
ξ2 + η2

0

∑
j

AjU
0
j

∂2Fj(ξ)
∂ξ2 − q2∑

j

AjFj(ξ)U0
j

 , (6.2.6)

where the gradient in parabolic cylinder coordinates have been used and the factor of
√

2q
appears from the chain rule used to normalize the differentials on the left hand side. The
second order derivative in ξ can be simplified using that ∂2

ξFj(ξ) = (q2ξ2 − E2)Fj(ξ) from
Eq. (6.1.6). This simplification combined with a multiplication of Fl(ξ) and integration
over ξ from −∞ to ∞ leads to the following eigenvalue equation5

4Assuming harmonic time dependence, the continuity equation in two dimensions can be cast into
iωρ2D(r) = ∇2D · J2D, and thus we get ρ2D(r) = (iω)−1∇2D · J2D. Introducing Ohm’s law given by
J2D = σE(r) and writing the electric field in terms of the potential yields ρ2D(r) = i(ω)−1σ[∇2

2D · φ].
5Where the orthogonality of the Hermite polynomials,

∫∞
−∞ e

−x2
Hn(x)dx = δn,m, have been used [27].
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√
2
q

iωε0
σ2D(ω)Al =

∞∑
j=0

MljAj , (6.2.7)

where the elements of the matrix Mlj reads

Mlj = −(2j + 1 + b2)
V 0
l U

0
j

ε1V 0
l U
′0
l − ε2U0

l V
′0
l

∫ ∞
−∞

dx√
x2 + b2

Fl(x)Fj(x), (6.2.8)

with fn(x) = 1√
2nn!

1
π1/4Hn(x) and the dimensionless parameters defined as x ≡ ξ

√
q and

b = q
√
η0. It becomes clear in the interpretation of Eq. (6.2.7) that the eigenvalue to the

matrix Mlj is given by

λν(q) =
√

2
q

iωε0
σ2D(ω) , (6.2.9)

where the subscript ν denotes the mode eigenindex. A simple version of the dispersion
relation can now be obtained under the assumption that the graphene sheet is well-described
by a Drude-like lossless conductivity, i.e. σ2D(ω) = iσ0

π
4EF
~ω . The eigenvalue equation then

leads to the following energy-wavevector dispersion relation

Ων(q) = Ωflat(q)
√
ε1 + ε2√

2
λν(q) , (6.2.10)

where Ω ≡ ~ω and Ωflat(q) =
√

4αEF ~c
ε1+ε2 is the flat graphene dispersion relation [11]. This

relation holds for both the VGPs and BGPs, which corresponds to an interchange between
ε1 and ε2.

The dispersion relation given by Eq. (6.2.10) have been illustrated for the first three
modes in Fig. 6.4 for both the bulge and the valley, shown in blue, orange and green from
lowest to highest mode. The spectrum thus exhibits the same discrete nature as the Drude-
metal parabolic guide discussed in the previous section. First and foremost, it is seen that
the lowest order mode achieves larger wavevectors as compared to higher modes for a fixed
frequency, which turns out to be a general trend throughout all of the presented configura-
tions. Comparison between panel a) and b) indicates that an increase in the curvature of
the parabola leads to larger wavevectors for the same frequency6. Consequently the field

6Using the transformations between the eucladian and parabolic coordinates in Eq. (6.1.3), it can be
shown that the parabola follows the curve defined by y = − 1

2η2
0
x2 + 1

2η
2
0 , from which it is observed that the

curvature is given by a = 1
2η2

0
. The η0 defining the parabolic interface is thus inversely proportional to the

curvature, i.e. η0 =
√

1
2a .
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confinement in the vicinity of the apex is larger for a more narrow bulge. Furthermore, it is
noticed that all the modes tends toward the flat graphene dispersion relation (black-dashed
line) for the curvature of the bulge going to zero. Analysing panel a), c) and d) all together
reveals that plasmons in the bulge attains larger field confinement than the case of identical
environment, which in turn has a larger degree of confinement than the parabolic valley.

It is concluded from Fig. 6.4 that the dispersion relation of the graphene-covered
parabolic bulge and valley lies beneath that of the flat graphene for sufficiently large curva-
tures, which means that these geometries is able to achieve ultra-confined surface plasmons,
exceeding the already well-confined GSPs at flat graphene interfaces. On a last note, it is
observed that all the modes lie far to the right of the light line (red-dashed curve), which
is a natural consequence of this outstanding confinement. The electrostatic limit, on which
these results have been derived, is therefore well suited for this system.

Figure 6.4: Dispersion relation of graphene plasmons in parabolic bulges and valleys. Part
a) and b) illustrates the spectrum of BGPs for two different curvatures of the graphene-
covered bulge, while part d) shows a single example of the dispersion relation for the inverse
configuration, i.e. VGP. ε1 = 1 and ε2 = 4 have been used in a) and b), followed by ε1 = 4
and ε2 = 1 in d). Part c) depicts the spectrum of BGPs, where the dielectric constant
of the surrounding medium is identical to the one making up the parabolic channel with
ε1 = ε2 = 2.5. All the plots is produced using Eq. (6.2.10) with EF = 0.5.
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6.2. Graphene-covered parabolic waveguide: Bulges and Valleys T.P. Rasmussen

It is desirable to get an insight into the behaviour of the electric potential near the
apex of the parabolic bulge, or equivalently the bottom of the parabolic valley. In order
to find this potential, one must first find the elements of the eigenvectors entering in Eq.
(6.2.7). Inserting these elements in the expansion of Eq. (6.2.1)-(6.2.2), and transforming
the parabolic cylinder coordinates back to the eucledian ones, provides the potential in
medium 1 and 2 through φ1 and φ2, respectively. The electric potential for the first two
modes in the parabolic bulge configuration have been showed in Fig. 6.5 for a = 0.2 and
fixed frequency of ω = 10 THz. It is observed that the lowest mode exhibits larger field
confinement than the second-lowest mode, which is in agreement with the previous discus-
sion regarding the dispersion relation. The frequency of the incoming light corresponds to
a wavelenght of λ0 = 30 µm, which is many times larger than the field localization of the
lowest mode shown in Fig. 6.5, where the potential extends to a few hundreds of nm in both
directions. It should be mentioned that the electric potential of the parabolic valley, with
identical curvature, displays a similar behaviour as the parabolic bulge, only with slightly
less confinement. These potential plots therefore support our previous claim of the great
degree of field confinement in the parabolic bulge and valley geometries.

Figure 6.5: Cross section of the graphene-covered parabolic bulge with curvature a = 0.2
(solid black line) superimposed onto a colormap, which represents the potential φ(x, y).
Plot a) and b) illustrates the lowest end second lowest mode for the bulge with a fixed
frequency of ωc = 10 THz. Both plots is shown in nm scale and the parameters have been
chosen as EF = 0.5 eV, ε1 = 1 and ε2 = 4, which corresponds to plot a) of Fig. 6.4.
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Chapter 7

Conclusions And Outlook

This thesis has presented a broad range of plasmonic systems in three and two dimensions,
which have been described in the framework of classical electrodynamics.

First and foremost, the fundamental concepts of classical electrodynamics was presented,
which, among other things, included Maxwell’s equations, the constitutive relations and
the corresponding boundary conditions. These definitions was then used together with
the Drude model to work out the basic formalism of SPPs sustained at single and double
dielectric-metal interfaces. Analysing the single interface revealed that the lossless Drude
metal dispersion relation was located to the right of the light-line at all times, asymptot-
ically approaching the surface plasmon frequency ωsp, while the Drude metal with losses
was limited to finite values of q, eventually ”bending back” to the left side of the light-line.
The analysis of the lossless double dielectric-metal interface was done in the form of sym-
metric MDM and DMD geometries, which showed a tendency of the modes to hybridize
for sufficiently small separation between the two interfaces, arising because of the interac-
tion of the modes in the middle medium. One striking difference between these modes was
that the high- and low-frequency version, as the name suggests, attained larger and smaller
frequencies as compared to the single interface plasmon. It was therefore concluded that
the field confinement of the low-frequency mode is higher than that of the high-frequency
mode.

The optical and electronic properties of graphene was then reviewed, where the real and
reciprocal lattice description of graphene was established. This information, in combination
with the tight-binding model, lead to the electronic band structure of graphene, from which
a particle-hole symmetric structure was found. Furthermore, performing a Taylor-expansion
around the symmetry point K resulted in a linear band structure. Consequently the free
charge carriers in graphene behave as massless Dirac fermions, which obeys the relativistic
Dirac Hamiltonian. The conductivity of graphene was discussed, dealing with intraband
and interband contributions separately. Utilizing suitable assumptions and considerations
simplified the overall graphene conductivity to that of a Drude-like intraband conductivity,
which was concluded to be valid for frequencies between THz and mid-IR. An outline of
the tranfer-matrix method was given in the case of single and double planar graphene
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configurations, from which the reflection, transmission and absorbance was derived in both
cases. The absorbance of the single graphene sheet turned out to approach a constant level
of 2.3 % for frequencies in the visible part of the spectrum.

The insights of the optoelectronic properties of graphene was then used in combination
with the techniques developed in the beginning of the thesis, in order to describe plasmonic
excitations in single and double layered graphene systems. It was concluded that both sys-
tems acquired a great degree of field confinement in the THz spectral range, and that the
GSPs could be actively tuned by simply adjusting the doping level. Once again, the appear-
ance of hybridized modes was observed for the double interface geometry, whose separation
increased (decreased) for a decrease (increase) of the distance between the interfaces. con-
sequently two single graphene interface dispersion relations was re-established in the limit
of d → ∞. This discussion was followed by an alternative approach to the derivation of
DLG dispersion, which was centralised around the idea of using the pole of the reflection
coefficient instead. The dispersion relation of a Drude metal parabolic waveguide have been
derived in the framework of parabolic cylinder coordinates in the electrostatic limit. The
dispersion relation was analysed in the η0 → ∞ and the q → ∞ limit, which both yielded
the same conclusion, stating that the dispersion relation tended towards that of a single
flat dielectric-metal interface. The same procedure was then performed for the graphene-
covered dielectric parabolic bulge and valley. The dispersion relation for the BGPs and the
VGPs was then presented. The modes of both structures was reported to lie beneath the flat
graphene dispersion relation, which indicates an increase in localization of the GSPs. The
findings indicated that the field confinement in the parabolic bulge was greater than in the
parabolic valley. This confinement could be further improved by increasing the curvature
of the parabolic bulge channel. Finally the corresponding potential for a fixed frequency
was shown for the parabolic bulge, which served as an alternative argument for the field
confinement and verified the localization in the vicinity of the apex.

The localized potential portrayed for the graphene-covered parabolic channels is largely
retained for a range of different curvatures and frequencies. These parabolic channels there-
fore serve as an ideal candidate for a possible plasmonic component in an optoelectronic
device, where sub-wavelength waveguiding is of importance [28, 29]. In this context differ-
ent sizes of the channel can be designed, meeting the relevant requirements for the device.

An example of such a device could be processing microchips, at which the number of
transistors have doubled every second year for the past several decades [30]. This immense
increase of data transfer have started to put pressure on the electrical interconnects, which
turns into ”bottlenecks”, limiting the overall performance of the chip [31]. These limitations
could be solved by substituting the currently operating interconnects with the graphene-
covered waveguide.

On a last note, the developed formalism of the graphene-covered channels could poten-
tially be used in the future for the investigation of local disturbances in an otherwise flat
graphene sheet [32], which take an approximate shape of a parabolic bulge or valley.
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Appendix A

Transparency of Graphene

It was seen in Sec. (4.3.1) that the optical transparency of graphene could be derived in
the discussion of the transfer-matrix method. This transparency tended towards a constant
value in the regime of visible wavelengths. This appendix serves to show an alternative way
to derive the same result, but now given in terms of the fine-structure constant.

A.1 Transmittance of Monolayered Graphene

The discussion of the transparency of a single graphene layer is here carried out under
the assumption that the electric field has an orthogonal incidence on the two-dimensional
graphene sheet (kx = ky = 0), meaning that the graphene occupies the xy-plane. The
amplitude of the electric field is in this case given by

E = E0e
ikr = eik0n∗z = E0e

ik0nze−k0κz, (A.1.1)

where n∗ = n+ iκ is the imaginary valued refractive index. The intensity of the radiation
is proportional to the square of the absolute value of the electric field

I ∝ |E|2 = E2
0
∣∣eik0nz

∣∣2∣∣e−k0κz
∣∣2 = E2

0e
−2k0κz. (A.1.2)

The transmittance though a graphene monolayer of thickness d is then computed by taking
the ratio between the intensity of the incoming and outgoing light

T = I

I0
= E2

0e
−2k0κd

E2
0

≈ 1− 2k0κd, (A.1.3)

where it has been assumed that the thickness d of the graphene sheet is very small. All
that is left to do at this point, in order to find the transmittance, is to find the imaginary
part of the refractive index, κ.
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The refractive index reads n∗ = √ε0µ0, and is simplified under the assumption that the
graphene sheet is non-magnetic (µ0 = 1). The relative permittivity is given in terms of the
susceptibility ε0 = 1 + χ, which leads to the following rewriting of the refractive index

n∗ =
√

1 + χ ≈ 1 + 1
2χ, (A.1.4)

where a Taylor expansion have been utilized. An expression for χ is found by using the
polarization density

P(ω) = ε0χ(ω)E(ω), (A.1.5)

in combination with the current density

J(ω) = σ3D(ω)E(ω). (A.1.6)

A change in the polarization density with time induces an associated current density, which
are given by

JP (ω) = ∂P(t)
∂t

= −iωE(t)ε0χ(ω). (A.1.7)

Hence, by inspection from Eq. (A.1.6) and Eq. (A.1.7), the conductivity is found to be

σ3D(ω) = −iωε0χ(ω). (A.1.8)

Isolating for the susceptibility yields1

χ(ω) = iσ3D(ω)
ωε0

= iσ2D(ω)
ωε0d

, (A.1.9)

which is now inserted back into Eq. (A.1.4), leading to

n∗ ≈ 1 + iσ2D(σ)
2dε0ω

. (A.1.10)

The imaginary part of the refractive index is found by comparing Eq. (A.1.10) to n∗ = n+iκ,
obtaining

1The 3D conductivity is related to the 2D conductivity through the following simple relation σ2D = dσ3D.
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κ(ω) = Re{σ2D}
2dωε0

. (A.1.11)

Finally, the transmittance of a single graphene sheet is computed by substituting this ex-
pression into Eq. (A.1.3)

T = 1− Re{σ2D}
cε0

= 1− σ0
cε0

. (A.1.12)

This is the final result of the transmittance. However, this result can be written in a more
elegant way, in terms of the fine-structure constant

T = 1− πα ≈ 97, 7%, (A.1.13)

meaning that a single layer of graphene is able to absorb 2, 3% of the incoming radiation.
This relatively high value of the absorption for a single graphene sheet can actually be seen
with the naked eye in a microscope, which have been illustrated in Fig. A.1.

Figure A.1: Graphene placed in conventional light microscope. It is possible to see the
boundary between the single graphene sheet and air because of the great ability of graphene
to absorb light at visible frequencies [33].
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Appendix B

Excitation of GSPs

It is not possible to excite the SPPs in graphene directly by electromagnetic radiation,
because of the discrepancy between the wavevector of the incoming beam and that of the
GSP. This becomes evident in the single-layered GSP dispersion plot in Fig. 5.2a, where
the momentum of the GSP lies to the right of the light line at all times. This natural
restriction of the GSPs also exists for the SPPs at metal-dielectric interfaces, and thus
alternative excitation techniques is sought as well in these systems.

B.1 Prism coupling: Otto configuration

It is possible to couple the incident TM electromagnetic wave to the GSP by the aid of a
prism, which has a dielectric constant greater than that of the surroundings. Total internal
reflection, meaning that θ > θc = sin−1(εdiel/εprism), inside the prism creates evanescent
waves able to couple to the SPP of the plasmonic material, or the graphene sheet. This
coupling takes place once the in-plane momentum of the light

q = ω

c

√
εprism sin(θ), (B.1.1)

equals the momentum of the GSP. The Otto configuration, which have been schematically
illustrated in Fig. B.1, can be used in order to excite GSPs with a prism [34].
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Figure B.1: SLG in the Otto configuration. The lower medium (ε1) and the prism (ε3)
is assumed to be semi-infinite. The graphene sheet is placed at z = 0 and the prism at
z = −Lp.

The red ring in Fig. B.2 indicates the momentum match in this configuration. It is clearly
seen that the wavevector of the light shifts towards larger values in the presence of the prism
(green dashed line), as compared to the wavevector value in air (orange dashed line).

The match of the momenta, and hence the excitation of the GSP, can equally be observed
as a brief decrease in the reflected wave. The derivation of this reflectance takes as its
starting point the electromagnetic fields together with the boundary conditions. Assuming
total internal reflection in the prism, these fields takes the following form for −Lp > z

E3(r) =
(
E

(i)
3,x, 0, E

(i)
3,z

)
eiki·r +

(
E

(r)
3,x, 0, E

(r)
3,z

)
e−iki·r, (B.1.2)

B3(r) =
(
0, B(i)

3,y, 0
)
eiki·r +

(
0, B(r)

3,y , 0
)
e−iki·r, (B.1.3)

where i and r denotes the incoming and reflected beam in the prism, respectively. Conse-
quently we have ki = √ε3ω/c(sin θ, 0, cos θ) and kr = √ε3ω/c(sin θ, 0,− cos θ). Exponen-
tially growing and decaying waves in the medium defined by −Lp < z < 0, leads to

E2(r) =
[(
E

(+)
2,x , 0, E

(+)
2,z

)
eκ2|z| +

(
E

(−)
2,x , 0, E

(−)
2,z

)
e−κ2|z|

]
eiqx, (B.1.4)

B2(r) =
[(

0, B(+)
2,y , 0

)
eκ2|z| +

(
0, B(−)

2,y , 0
)
e−κ2|z|

]
eiqx, (B.1.5)

with κ2 =
√
q2 − ε2ω2/c2, and where q = √ε3ω/c sin(θ) depicts the in-plane momentum.
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Figure B.2: Depiction of the prism
coupling technique to excite GSPs
in the otto configuration. The solid
blue line indicates the TM GSP dis-
persion, while the orange dashed
and green dashed lines represents the
light line in air and the prism, re-
spectively. Parameters: EF = 0.45
eV, ε1 = ε2 = 1 and ε3 = 14

The last medium, bounded by z > 0, takes the usual form for a TM bound wave propagating
along the x-direction

E1(r) = (E1,x, 0, E1,z)e−κ1|z|eiqx, (B.1.6)
B1(r) = (0, B1,y, 0)e−κ1|z|eiqx, (B.1.7)

with κ1 =
√
q2 − ω2/c2ε1. The usual harmonic time dependence e−iωt will be assumed in

the derivation. The boundary condition at z = −Lp reads

E
(i)
3,xe
−ik3,zLp + E

(r)
3,xe

ik3,zLp = E
(+)
2,x e

κ2Lp + E
(−)
2,x e

−κ2Lp , (B.1.8)

B
(i)
3,xe
−ik3,zLp +B

(r)
3,xe

ik3,zLp = B
(+)
2,x e

κ2Lp +B
(−)
2,x e

−κ2Lp , (B.1.9)

while the boundary condition for z = 0 gives

E
(+)
2,x + E

(−)
2,x = E1,x, (B.1.10)

B
(+)
2,y +B

(−)
2,y = B1,y + µ0σ(ω)E1,x, (B.1.11)

where σ(ω) expresses the dynamical conductivity of graphene. A relationship between the
magnetic (Bj,y) and electric field amplitudes (Ej,x and E(±)

j,x ) is obtained through Maxwell’s
equations. Connecting these amplitudes leads to four equations, which constitute a linear
system, written in matrix form as
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Motto
SLG


E

(r)
3,x/E

(i)
3,x

E
(+)
2,x /E

(i)
3,x

E
(−)
2,x /E

(i)
3,x

E1,x/E
(i)
3,x

 =


e−ik3,zLp

− ε3
k3,z

0
0

 , (B.1.12)

where

Motto
SLG =


−eik3,zLp eκ2Lp e−κ2Lp 0
− ε3
k3,z

eik3,zLp i ε2κ2
eκ2Lp −i ε2κ2

e−κ2Lp 0
0 −1 −1 1
0 − ε2

κ2
ε2
κ2

ε2
κ2

+ iσ(ω)
ωε0

 . (B.1.13)

The reflection coefficient is in general given by the ratio between the incoming and outgoing
beam, which turns out to be the first entry in the vector on the left hand side in Eq.
(B.1.12). This entry can be found by the use of Cramer’s rule [35]

r =
E

(r)
3,x

E
(i)
3,x

= det(motto
SLG)

det(Motto
SLG) , (B.1.14)

where motto
SLG is made by changing the first column in Motto

SLG to that of the column vector
on the right hand side of Eq. (B.1.12). The reflectance can now be evaluated from the
modulus squared of the reflection coefficient, which yields

RottoSLG =
∣∣∣∣∣Ξ∗Λ− + ΞΛ+e2κ2Lp

ΞΛ− + Ξ∗Λ+e2κ2Lp

∣∣∣∣∣
2

. (B.1.15)

The asterisk symbol in the above equation represents the complex conjugate and the fol-
lowing definitions have been used

Ξ = ε3κ2 + iε2k3,z, (B.1.16)

Λ± = ε2κ1 ± ε1κ2 ± κ1κ2
iσ

ωε0
, (B.1.17)

for the sake of simplicity. Taking the conductivity to be purely imaginary, meaning that
Re{σ} = 0, the denominator equals the complex conjugate of the nominator, and hence
RottoSLG = 1. All the energy from the incoming beam is therefore reflected1, which is in
accordance with the physical interpretation of the real part of the conductivity.

1This would correspond to setting γ = 0 in the Drude-like conductivity for graphene, at which no losses
is present in the system.
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Detection of GSP excitations is depicted in Fig. B.3. The general idea is to look for
points where the reflectance goes to approximately zero, which indicates GSP excitation.
Two common approaches for the detection of GSP excitation is to measure the reflectance
as a function of the incident angle, while the frequency is held constant, or measuring the
reflectance as a function of frequency for a fixed angle. These procedures is illustrated in
panel a) and panel c) in Fig. B.3. It is seen in panel a) that the decrease in reflectance
occurs at increasingly higher angles when the frequency is raised. This behaviour is caused
by the fact that the in-plane momentum is proportional to ω, and thus the match in mo-
mentum will happen for larger angles. The same argumentation holds for the observations
made in panel c), where larger angles leads to resonance at higher frequencies, because
the in-plane momentum is proportional to sin(θ). These two approaches for detection of
GSP excitation is shown together in panel d), where a color map with both the angle and
frequency dependence of the reflectance, R(ω, θ) , is illustrated. The blue parts of the map
corresponds to the right combination of angle and frequency needed to excite GSPs in the
Otto configuration. Finally the influence of the doping level on the reflectance is shown in
panel b).
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Figure B.3: Otto configuration used to produce propagating GSPs. a) Reflectance as a
function of the angle for three arbitrary frequencies with EF = 0.5 eV, identifying correct
circumstances for exciting GSPs. b) Reflectance as a function of frequency with four dif-
ferent doping levels, where the angle have been fixed to θ = 82o. Parameters in a) and b):
ε1 = 4, ε2 = 1, ε3 = 14, ~γ = 0.1 meV and Lp = 2.5 µm. c) Reflectance as a function of
frequency for three distinct angles with a fixed doping level EF = 0. d) Density plot of the
reflectance as a function of the angle and the frequency, where EF = 0.5 eV. Parameters in
c) and d): ε1 = ε2 = 4, ε3 = 14, ~γ = 0.1 µm and Lp = 20 µm.
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Appendix C

Guided Plasmons in the
Hyperbolic Wedge Geometry

An alternative structure to the parabolic wedge for CPPs is that of the hyperbolic shape
[25, 36, 26]. The hyperbolic geometry will, as the parabolic shape, lead to ultra confined
electromagnetic radiation. The discussion of the hyperbolic structure can indeed be seen
as an alternative approach to the parabolic one, since the rounding edge in the hyperbolic
cylinder to first approximation looks like the parabolic cylinder.

C.1 Elliptic cylinder coordinate system

It is advantageous to adapt the elliptic cylinder coordinate system in the discussion and
derivation of the electrostatic edge modes of the hyperbolic wedge, this coordinate system is
shown in Fig C.1. A given location in space is now given by the coordinates u and ν, where
0 6 u 6 ∞, −α 6 ν 6 α and −∞ 6 z 6 ∞. The transformation between the ordinary
Cartesian and elliptic cylinder coordinate system are given by

x = a cosh(u) cos(ν) (C.1.1a)
y = a sinh(u) sin(ν) (C.1.1b)
z = z, (C.1.1c)

where a is the focus of the elliptic coordinate. Finally the laplacian in these coordinates
takes the following form

∇2Φ = 1
a2(sinh2(u) sin2(ν))

(
∂2Φ
∂u2 + ∂2Φ

∂ν2

)
+ ∂2Φ
∂z2 . (C.1.2)
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Figure C.1: Elliptic cylinder coordinate system with the coordinates u, ν and z, which
points into the paper [37].

C.2 Laplace’s Equation

The hyperbolic wedge is taken to occupy the space bounded by −α 6 ν 6 α (α is some
angle between 0 and π/4), u > 0 and −∞ 6 z 6 ∞. The electrostatic edge modes of this
dielectric wedge is found as the solution to Laplace’s equation for the potential Φ(u, ν, z, t)

∇2Φ(u, ν, z, t) = 0. (C.2.1)

Translational invariance is assumed along the z-axis, which means that the z-dependence of
the potential can be written in terms of a simple exponential

Φ(u, ν, z, t) = φ(u, ν)ei(kz−ωt). (C.2.2)

ω and k, as usual, denotes the frequency and wave number respectively. Substituting this
potential into Eq. (C.2.1) yields

∇2Φ = ei(kz−ωt)

a2(sinh2(u) + sin2(ν))

(
∂2φ(u, ν)
∂u2 + ∂2φ(u, ν)

∂ν2

)
+ ∂2(ei(kz−ωt))

∂z2 φ(u, ν) = 0

(C.2.3)
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∂2φ(u, ν)
∂u2 + ∂2φ(u, ν)

∂2ν2 − a2k2
[
sinh2(u) + sin2(ν)

]
φ(u, ν) = 0 (C.2.4)

One way to solve this equation is to factorize the potential, so that φ(u, ν) = f(u)g(ν). This
factorization means that Laplace’s equation can be solved by separation of variables. More
specifically, Eq. (C.2.4) yields two differential equations [26], one for the elliptic coordinate

d2g(ν)
dν2 + [−En − 2q cos(2ν)] g(ν) = 0, (C.2.5)

and one for the angular coordinate

d2f(u)
du2 − [−En − 2q cosh(2u)] f(u) = 0, (C.2.6)

where

q = −k
2a2

4 , (C.2.7)

and En is the separation constant. This separation constant is found as a perturbed version
of the eigenvalues of the quantum harmonic oscillator (with a parabolic potential), given
that we are sufficiently close to the rounding edge of the hyperbolic shape. These two
differential equations will now be analysed separately.

C.2.1 Angular differential equation

It becomes apparent that Eq. (C.2.5) can be identified with the Mathieu differential equa-
tion, which has as its general solution a linear combination of Mathieu functions of real
order [27]

g(ν) = Acen(ν, q) +Bsen(ν, q) (C.2.8)

with

cen(ν, q) = cos(µnν) +
∞∑
r=1

qrcr(ν), (C.2.9)

sen(ν, q) = sin(µnν) +
∞∑
r=1

qrsr(ν). (C.2.10)

µ is the order of the Mathieu function, while sr and cr are the Mathieu coefficients [38].
The functions cen and sen have distinct symmetry properties with respect to the midplane
corresponding to the x-axis, or ν = 0 (ν = π) for the dielectric (vacuum) medium.
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C.2.2 Elliptic differential equation

Taking a closer look at the elliptic differential equation, this equation can be written as

d2f

du2 −
df

du
coth(u) + df

du
coth(u)− (−En − 2q cosh(u)) = 0, (C.2.11)

where the u dependence of the function f is implicit. This expression may be written in
terms of alternative trigonometric functions

d2f

du2

[
cosh2(u)
sinh2(u)

− 1
sinh2(u)

]
+ df

du

[
cosh(u)
sinh3(u)

− cosh3(u)
sinh3(u)

]
︸ ︷︷ ︸

µ(u)

+ df

du

cosh(u)
sinh(u) − (−En − 2q cosh(2u)) = 0.

(C.2.12)

The four terms inside µ(u) is rewritten in the following way

µ(u) =
[
d2f

du2
1

sinh2(u)
− df

du

coth(u) csch(u)
sinh(u)

] (
cosh2(u)− 1

)
= 1

sinh(u)

[
d2f

du2
1

sinh(u) −
df

du
coth(u) csch(u)

] (
cosh2(u)− 1

)
= 1

sinh(u)
d

du

[
df

du

1
sinh(u)

] (
cosh2(u)− 1

)
.

(C.2.13)

Substituting µ(u) back into Eq. (C.2.12) leads to

[ 1
sinh(u)

d

du

(
df

du

1
sinh(u)

)](
cosh2(u)− 1

)
+ df

du

cosh(u)
sinh(u) − (−En − 2q cosh(2q)) = 0.

(C.2.14)

Using the chain rule backwards on the square parenthesis on the left-hand side yields

df

du

1
sinh(u) = df

du

[
d[cosh(u)]

du

]−1
= df

du

du

d[cosh(u)] = df

d[cosh(u)] . (C.2.15)

Inserting this result back into Eq. (C.2.14) leads to

d2f

d[cosh(u)]2
(
cosh2(u)− 1

)
+ df

du

cosh(u)
sinh(u) − (−En − 2q cosh(2q)) = 0. (C.2.16)
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The identity cosh(2x) = 2 cosh2(x) − 1 is then exploited in the last term on the left-hand
side

d2f

d[cosh(u)]2
(
cosh2(u)− 1

)
+ df

du

cosh(u)
sinh(u) − (−4q cosh2(u)− En + 2q) = 0. (C.2.17)

Multiplying by one in the form of −4q
−4q and 2

√
−q

2
√
−q leads to the following expression

df

d[cosh(u)]2
1
−4q

[
−4q cosh2(u) + 4q

]
+ 2
√
−q

2
√
−q

df

d[cosh(u)] −
[
−4q cosh2(u)− En + 2q

]
= 0.

(C.2.18)

Finally, the definition h ≡ 2
√
−q cosh(u) brings Eq. (C.2.18) on the form of the modified

Bessel equation with an inhomogeneous term

h2d
2h

dh2 + h
df

dh
− (h2 − En + 2q) = −4q d

2f

dh2 . (C.2.19)

Writing the original elliptic differential equation (C.2.6) in terms of the modified Bessel
equation (C.2.19) turns out to be of great advantage in the computation of the general
solution. The solution to the homogeneous part of Eq. (C.2.19) (i.e. the complementary
solution) is given as a linear combination of the modified Bessel functions with imaginary
order

yc = c1Iiα(h) + c2Kiα(h), (C.2.20)

where Iiα(h) and Kiα(h) denotes the modified Bessel function of first and second kind re-
spectively and α = (En + k2a2/2)1/2. The asymptotic behaviour of the modified Bessel
functions is well know, where Iiα(h) increases exponentially and Kiα(h) decreases exponen-
tially. Hence c1 in Eq. (C.2.20) is set to zero, in order to make physical sense of the final
result. Knowing the two linearly independent solutions to the homogeneous version, the
solution to the inhomogeneous Bessel equation (i.e the particular solution) can be found
[39]

f inh(h) = Kiα(h)
∫ h

dtIiα(t)
(

4q
t

d2f inh(t)
dt2

)
− Iiα(h)

∫ h

dtKiα(t)
(

4q
t

d2f inh(t)
dt2

)
+ constant.

(C.2.21)

The general solution to (C.2.6) is then found by adding together the complementary and
particular solution

f(h) = c×Kiα + f inh(h) (C.2.22)
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C.3 Dispersion relation

The electrostatic potential is now found by combining the general solution for the angular
and elliptic differential equation. As mentioned earlier, the angular equation yields both an
even and an odd solution with respect to the midplane (ν = 0), which then naturally leads
to an even potential

φen(u, ν, z) =
{
Af(u)cen(ν, q)ei(kz−ωt) for − α < η < α

Bf(u)cen(π − ν, q)ei(kz−ωt) for α < η < 2π − α
, (C.3.1)

and an odd potential

φon(u, ν, z) =
{
Cf(u)sen(ν, q)ei(kz−ωt) for − α < η < α

Df(u)sen(π − ν, q)ei(kz−ωt) for α < η < 2π − α
, (C.3.2)

where cen(ν, q), sen(ν, q) and f(u) are given by Eq. (C.2.9), (C.2.10) and (C.2.22) re-
spectively. The constants A, B, C and D is then identified by utilizing the following two
boundary conditions

∂φ1
∂ν

ε1
∣∣∣
ν=ν0

= ∂φ2
∂ν

ε2(ω)
∣∣∣
ν=ν0

, (C.3.3)

φ1
∣∣∣
ν=ν0

= φ2
∣∣∣
ν=ν0

, (C.3.4)

where ε1 and ε2(ω) refers to the the dielectric function of surrounding dielectric and metal
respectively. Applying these boundary conditions leads to the even and odd dielectric
function

ε2(ω) = −cen(ν, q)ce′n(π − ν, q)
ce′n(ν, q)cen(π − ν, q) (even mode), (C.3.5)

ε2(ω) = −sen(ν, q)se′n(π − ν, q)
se′n(ν, q)sen(π − ν, q) (odd mode), (C.3.6)

where the prime denotes differentiation with respect to the argument. This dielectric func-
tion is shown in the left panel of Fig. C.2 for the first four modes. It is worth noticing that
all the modes approach ε2 = −1 for q →∞.
Assuming that the optical behaviour of the metal, which makes up the hyperbolic shape,
can be described by the Drude model leads to

1− ω2

ω2
p

=


− cen(ν,q)ce′n(π−ν,q)
ce′n(ν,q)cen(π−ν,q) (even mode)

− sen(ν,q)se′n(π−ν,q)
se′n(ν,q)sen(π−ν,q) (odd mode).

(C.3.7)
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Isolating for the normalized frequency then yield the following dispersion relation for the
hyperbolic waveguide

ω

ωp
=
√

ce′n(ν, q)cen(π − ν, q)
ce′n(ν, q)cen(π − ν, q) + cen(ν, q)ce′n(π − ν, q) , (C.3.8)

for the even modes, and

ω

ωp
=
√

se′n(ν, q)sen(π − ν, q)
se′n(ν, q)sen(π − ν, q) + sen(ν, q)se′n(π − ν, q) , (C.3.9)

for the odd modes. These dispersion relations is illustrated in the right panel of Fig. C.2.
It is once again seen that all the modes tends toward the same asymptotic value. This
value is in agreement with the surface plasmon frequency for SPPs propagating at a planar
interface separating a metal and a dielectric. The sense of this agreement can be argued
in two different ways: i) When q → ∞ then λSPP → 0, and thus the surface seems flat
locally for the SPP. ii) The hyperbolic structure in Fig. C.1 becomes a flat surface As
a→∞. Finally one notices that the even modes starts at zero in right panel, while the odd
modes start at one, which was also the case for the dispersion relation in the planar DMD
geometry.

Figure C.2: Left Panel) Dielectric function of the first four modes for SPPs propagating
along a hyperbolic shaped waveguide. Right Panel) Corresponding dispersion relation,
where the metal have been modelled as a Drude metal with γ = 0.
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